
General and Nested Wiberg Minimization

Dennis Strelow
Google

Mountain View, CA
strelow@google.com

Abstract

Wiberg matrix factorization breaks a matrix Y into low-
rank factors U and V by solving for V in closed form given
U , linearizing V (U) about U , and iteratively minimizing
||Y −UV (U)||2 with respect to U only. This approach fac-
tors the matrix while effectively removing V from the mini-
mization. Recently Eriksson and van den Hengel extended
this approach to L1, minimizing ||Y − UV (U)||1. We gen-
eralize their approach beyond factorization to minimize an
arbitrary function that is nonlinear in each of two sets of
variables. We demonstrate the idea with a practical Wiberg
algorithm for L1 bundle adjustment. We also show that one
Wiberg minimization can be nested inside another, effec-
tively removing two of three sets of variables from a min-
imization. We demonstrate this idea with a nested Wiberg
algorithm for L1 projective bundle adjustment, solving for
camera matrices, points, and projective depths.

We also revisit L1 factorization, giving a greatly simpli-
fied presentation of Wiberg L1 factorization, and presenting
a successive linear programming factorization algorithm.
Successive linear programming outperforms L1 Wiberg for
most large inputs, establishing a new state-of-the-art for for
those cases.

1. Introduction
Matrix factorization breaks a matrix Y into low-rank fac-
tors U and V by minimizing ||Y − UV || with respect to U
and V . Wiberg[14] approached the L2 version of this prob-
lem by solving for V given U in closed form, linearizing
V (U) about U , and iteratively minimizing ||Y −UV (U)||2
with respect to U only, rather than U and V simultane-
ously. This approach minimizes the original objective func-
tion while eliminating V from the minimization, improv-
ing convergence[7][8]. Recently Eriksson and van den
Hengel[2] showed that the Wiberg approach could be ex-
tended to L1, minimizing ||Y −UV (U)||1, using linear pro-
gramming. They showed that their Wiberg approach outper-
formed the previous state-of-the-art for L1 factorization, Ke

and Kanade’s[6] alternative convex programming method.
In this paper we generalize the Wiberg approach beyond

factorization to minimize an arbitrary nonlinear function of
two sets of variables, f(U, V). Our general Wiberg min-
imization can be used for L1 minimization, L2 minimiza-
tion, or maximum likelihood estimation. In this paper we
focus on the most complex case, L1, generalizing Eriks-
son and van den Hengel’s method. We demonstrate the idea
with a practical Wiberg algorithm forL1 bundle adjustment,
which we demonstrate on a real image sequence with about
700 images and 10,000 points.

Our general Wiberg minimization works by solving for
V iteratively rather than in closed form. Since it is found
iteratively, V can itself be split into two sets of variables
found using Wiberg minimization. This results in a nested
Wiberg minimization that can effectively minimize with re-
spect to three sets of variables. We demonstrate this idea
with an L1 Wiberg algorithm for projective (uncalibrated)
bundle adjustment, solving for camera matrices, points, and
projective depths.

Our main contributions are general and nested Wiberg
minimization; general and nested Wiberg minimization for
the hardest case, L1; and L1 bundle adjustment and L1 pro-
jective bundle adjustment using both Wiberg and successive
linear programming, which minimizes with respect to all of
the variables simultaneously. We also include some contri-
butions to L1 matrix factorization: a greatly simplified pre-
sentation of L1 Wiberg factorization, which should make it
more accessible; and a successive linear programming algo-
rithm for L1 factorization, which is more practical than L1

Wiberg for large inputs, establishing a new state-of-the-art
for for those cases.

Table 1 shows general Wiberg’s place in the space of op-
timization problems.

2. Related work
Wiberg[14] presented an L2 factorization algorithm for ma-
trices with missing data, which solved for one set of vari-
ables V in terms of the other U , linearized V about U ,
and then minimized with respect to U only. Okatani et

1

linear in U or V
minimize L2 minimize L1 MLE

simultaneous X X X
alternating X X X

Wiberg Wiberg 1976 Eriksson 2010 this work

nonlinear in both U and V
minimize L2 minimize L1 MLE

simultaneous X X X
alternating X X X

Wiberg this work this work this work

Table 1. Optimization problems in two sets of variables U , V ,
and possible approaches for solving them. “X” indicates standard
algorithms like Levenberg-Marquardt, successive linear program-
ming, or expectation-maximization. General Wiberg (“this work”)
greatly extends the applicability of the Wiberg approach.

al.[7][8] showed that Wiberg factorization converged better
than minimizing with respect to U and V simultaneously
with Levenberg-Marquardt and other algorithms, and ar-
gued that Wiberg’s method had been neglected by the com-
puter vision community.

Recently, Eriksson and van den Hengel[2] extended this
approach to L1 matrix factorization using linear program-
ming. Their method outperformed Ke and Kanade’s al-
ternating convex programming algorithms[6], establishing
a new state-of-the-art for L1 factorization. Using Eriks-
son and van den Hengel’s development, we generalize their
method beyond factorization to minimize functions that
are nonlinear in each of two sets of variables. We also
compare their factorization against a stronger baseline than
they considered, which minimizes with respect to all of the
variables simultaneously. This experiment is analogous to
Okatani and Deguchi’s[7] L2 experiment with Wiberg and
Levenberg-Marquardt.

Wiberg’s method was an application of Ruhe and
Wedin’s[12] more general work on separable nonlinear
minimization that solved for a V in terms of U and then
minimized with respect to U only. Ruhe and Wedin rec-
ognized that this approach would be advantageous when
V breaks down into small independent problems given U ,
which happens in all the problems in this paper. But, their
analysis and experiments focused on least squares objective
functions linear in V . In even earlier work, Richards[11]
described a separable method for maximum likelihood esti-
mation, but similarly demonstrated it only on a least squares
problem linear in V . In contrast, we consider more general
functions that can be nonlinear in both U and V . For L1,
there is no previous work analogous to Ruhe and Wedin or
Richards.

The Wiberg approach contrasts with alternating least
squares and similar methods, which alternate between solv-
ing for one set of unknowns while holding the other
fixed. Alternating methods sometimes converge well, but
they can also converge very slowly[7] or fail to converge
“catastrophically”[10]. For this reason, we’ve bypassed

alternating methods as baseline algorithms, instead min-
imizing with respect to all of the unknowns simultane-
ously. Since we’re considering L1 in this paper, we’ve used
successive linear programming[1], which often converges
quadratically.

3. Wiberg L1 Factorization
In this section we present Eriksson and van den Hengel’s
Wiberg L1 factorization (subsections 3.1-3.4), an alterna-
tive algorithm that minimizes with respect to all of the un-
knowns simultaneously using successive linear program-
ming (3.5), and a qualitative analysis of L1 Wiberg (3.6).

Our presentation of WibergL1 factorization is equivalent
to the original but simpler, and should be more accessible.
Part of the simplification is an algorithmic change – solving
for the columns of V separately rather than solving for V as
a whole – which produces the same solution while greatly
simplifying the math.

Throughout the paper we’ll use derivatives of matrices
and derivatives with respect to matrices. Fackler’s notes[3]
are a good guide to matrix derivatives. Most cases we’ll
encounter can be handled by flattening the matrices to vec-
tors by column, and then using the normal rules for vector
derivatives.

The general and nested Wiberg minimizations in Sec-
tions 4 and 5 below rely heavily on the development in this
section.

3.1. Linear Programming and Derivatives

Linear programming solves the problem:

min
x
cTx, s.t.Ax ≤ b, x ≥ 0 (1)

(1) is the problem’s canonical form, which we’ll use in Sec-
tions 3.2 and 3.3 below. We’ll solve this problem using the
simplex method.

To find the derivatives of the linear program solution x,
we’ll also need to understand the slack form used by the
simplex method, which converts the inequalities Ax ≤ b to
equalities by introducing nonnegative slack variables s:

min
x
cTx, s.t. [A I][x; s] = b, x ≥ 0, s ≥ 0 (2)

The optimal solution [x; s] will include basic components
xB , which can be nonzero; and nonbasic components xN ,
which will be zero. The columns of [AI] corresponding to
xB are the basis B, and BxB = b. Then since xB = B−1b,
it can be shown that:

dxB
dB

= −xTB ⊗B−1 (3)

dxB
db

= B−1 (4)

where ⊗ is the Kronecker product. Some simple rearrang-
ing (e.g., inserting zero derivatives corresponding to ele-
ments of the nonbasic components, dropping derivatives
of the slack variables) then converts these derivatives to
dx/dA and dx/db.

3.2. Linear L1 Minimization

We can minimize the L1 residual of an overdetermined lin-
ear system,

min
y
||d− Cy||1 (5)

using linear programming. Since the linear programming
problem (1) requires x ≥ 0, we’ll split y into the difference
of two nonnegative terms, y = y+ − y−. Then, let ti be the
L1 residual of individual row i of d− Cy:

ti = |di − Ci(y+ − y−)| (6)

Converting (6) to two inequalities we have:

Ci(y
+ − y−)− ti ≤ di (7)

−Ci(y+ − y−)− ti ≤ −di (8)

Then, the optimal y+, y−, ti can be found with the linear
program:

min
y+,y−,t

[
0 0 1

] y+y−
t

 (9)

[
C −C −I
−C C −I

]y+y−
t

 ≤ [d−d
]

(10)

The objective function in (9) just says to minimize the sum
of the individual L1 errors. We can get the derivative of
[y+ y− t] with respect to the coefficient matrix and right-
hand side of (10) as described in Section 3.1 above. Since
y is a simple function of y+, y− and the coefficient ma-
trix and right-hand-side are simple functions of C, d, we
can then get dy/dC and dy/dd from those derivatives with
some simple algebra and rearranging.

3.3. Nonlinear L1 Minimization

We can minimize the L1 norm of a nonlinear function using
the linear minimization in Section 3.2 iteratively. Suppose
we have errors between predictions f(x) and observations
y:

error(x) = y − f(x) (11)

and we want to minimize:

min
x
||error(x)||1 (12)

Given an estimate x, compute a new estimate x+ δx with:

min
δx
|| error(x)− df(x)

dx
δx||1 (13)

and repeat until convergence. (13) is a linear L1 minimiza-
tion and can be solved as described in 3.2. This iteration is
successive linear programming[1] applied to L1 minimiza-
tion, and will be used by all of the algorithms in this paper.

The step will often increase rather than decrease the ob-
jective function, preventing convergence, because the δx
that minimizes (13) may be outside the region where the
linearization df(x)/dx is accurate. An adaptive trust re-
gion helps ensure convergence by limiting the step to a fi-
nite region near the current estimate, and adaptively deter-
mining what the size of that region should be. The trust
region’s role is similar to the adaptive damping factor λ that
Levenberg-Marquardt adds to Gauss-Newton.

To limit the step size ||δx||1 in (13) to some trust region
size µ, we augment (10) to be: C −C −I

−C C −I
I I 0

y+y−
t

 ≤
 d
−d
µ

 (14)

We also need to adapt µ to a useful step size around the
current estimate. If the most recent δx decreases the objec-
tive function, we increase µ to 10µ assuming that the best
trust region is no smaller than the current µ. If δx does not
decrease the objective function, then δx is outside the re-
gion where the linearization is valid, and we decrease µ to
||δx||1/10 and recompute.

3.4. Wiberg L1 Factorization

Suppose we have an observation matrix Y , that obser-
vations Yr1,c1 , Yr2,c2 , . . . , Yrk,ck are present, and that the
other observations are missing. Then, low-rank matrix fac-
torization minimizes:

||[Yr1,c1 . . . Yrk,ck]T − [ur1vc1 . . . urkvck]
T||1 (15)

with respect to low-rank factors U and V , where ur is row r
of U and vc is column c of V . Eriksson and van den Hengel
showed that Wiberg’s approach could be used to minimize
(15) by combining the linear and nonlinear L1 minimiza-
tions in the previous sections.

First, hold U fixed and solve for each column vc of V ,
by minimizing

||[Yri1 ,c . . . Yrin ,c]
T − [uri1 ; . . . ;urin]vc||1 (16)

with respect to vc. This is a linear minimization, so vc and
dvc/dU can be found as described in Section 3.2 above.

Then, rewrite (15) as a function of U only:

||[Yr1,c1 . . . Yrk,ck]T − [ur1vc1(U) . . . urkvck(U)]T||1
(17)

and minimize it iteratively with respect to U using (13). To
do this, we need the errors y− f(x), which are just the vec-
tor in (17), and the derivative of the predictions with respect

to U . In this case, the individual predictions are urivci(U)
and their derivatives are:

durivci(U)

dU
=
∂urivci(U)

∂U
+
∂urivci(U)

∂vci

dvci
dU

(18)

where
∂urivci(U)

∂uri
= vTci (19)

and the partial derivative with respect to other components
of U is zero; and

∂urivci(U)

∂vci
= uri (20)

Solving for the vc independently produces the same results
as solving for all of V in one linear program (as in [2]) while
simplifying the method.

3.5. Simultaneous L1 Factorization

Minimizing with respect to U and V simultaneously us-
ing the successive linear programming algorithm in Section
3.3 is a promising alternative to Wiberg. Successive linear
programming can converge quadratically[1], and in our ex-
periments its convergence and speed compete strongly with
Wiberg.

To minimize with respect U and V simultaneously, we
use the same objective function (15) and error function as
the Wiberg algorithm. So, all we need are the derivatives of
the predictions with respect to U and V for the update step
(13). The derivatives of the prediction urivci with respect
to uri and vci are:

durivci
duri

= vTci (21)

durivci
dvci

= uri (22)

The other derivatives are zero.
We’ll also look at simultaneous minimization as an al-

ternative our general and nested Wiberg algorithms in Sec-
tions 4 and 5 below. When we refer to a “simultaneous”
algorithm below, we mean minimizing with respect to all of
the unknowns as in this subsection.

3.6. Analysis

Wiberg effectively removes V from the minimization,
which at first blush promises to be faster than minimizing
with respect to U and V simultaneously. But, L1 Wiberg
has two speed issues.

First, when we solve for the step in each iteration in (13),
we solve a linear programming problem (9), (10) that in-
cludes the error ti for each observation as an unknown. The
ti’s remain whether we use Wiberg or simultaneous mini-
mization, and their number can dwarf the size of U and V .

So, depending on the original problem dimensions, remov-
ing V may not reduce the linear programming problem size
significantly. Second and more important, the derivative
matrix in solving for the step in (13) is denser for Wiberg
(18) than for simultaneous minimization (21), (22), which
greatly increases the linear programming time.

So, we’ll see in the results below that either Wiberg or
simultaneous minimization can be faster depending on the
problem size and sparsity. This consideration also carries
over to the general and nested Wiberg methods.

Section 3.5 mentioned that successive linear program-
ming can converge quadratically, and as a straightforward
instance of successive linear programming, the simulta-
neous factorization in that section can converge quadrati-
cally. The Wiberg factorization, general Wiberg, and nested
Wiberg algorithms in Sections 3.4, 4, and 5 use successive
linear programming as the outer loop and, surprising, can
also converge quadratically despite their increasing com-
plexity.

4. General Wiberg Minimization
In this section we generalize the Wiberg approach to arbi-
trary nonlinear functions of two sets of variables. We call
the resulting algorithm general Wiberg minimization. As an
example of this idea, we implement L1 bundle adjustment
as a general Wiberg minimization.

4.1. General Algorithm

Wiberg L1 factorization solves for V and its derivative with
respect to U using the closed-form linear minimization in
3.2, but solves for U using the iterative nonlinear minimiza-
tion in 3.3. So, adapting the algorithm to minimize a non-
linear function of U is straightforward – possibly just by
changing a few lines of code – as long as the function is
linear in V . But many functions are nonlinear in two sets of
variables. In bundle adjustment, for instance, the objective
function is a sum of reprojection errors, which are nonlin-
ear in both the three-dimensional point positions and the
six-degree-of-freedom camera positions.

To handle objective functions like these, we use iterative
minimization for V as well as U . With this approach, we
have an outer loop that minimizes with respect to U , and
within each U iteration, we have an inner loop that min-
imizes with respect to V . This method is best suited for
problems like bundle adjustment (and factorization) where
given U , V breaks down into independent subproblems vc.
In this case the time for iteratively solving for the vc is small
because each vc is much smaller than U .

But in the Wiberg approach, the vc’s vary implicitly with
U via dvc/dU . How do we find dvc/dU if we found vc
iteratively?

Consider solving for vc using the algorithm in 3.3, by
substituting vc for x there. Then, our final estimate for vc is

vpreviousc + δvc for some constant vpreviousc . So, the deriva-
tive of vc with respect to U is the derivative of δvc .

dvc
dU

=
dδvc
dU

(23)

=
dδvc

d(dp(vc)/dvc)

d(dp(vc)/dvc)

dU
(24)

+
dδvc

derror(vc)

derror(vc)

dU
(25)

where p(vc) is our prediction for the observations that are a
function of vc. The derivatives of error(vc) and dp(vc)/dvc
with respect toU depend on the specific function we’re min-
imizing.

Once we have the vc’s and dvc/dU ’s, we compute the
derivatives of the predictions with respect to U by general-
izing equation (18) to:

dp(U)

dU
=
∂p(U)

∂U
+
∂p(V)

∂V

dV

dU
(26)

We can then minimize with respect to U by substituting this
derivative for df(x)/dx in Section 3.3, just as we did in the
Wiberg factorization.

If the inner iterations for vc converge, the final steps δvc
will be zero. This means that in the linear programming so-
lution for δvc , the simplex method can exclude elements of
δvc from the basis, and its derivatives with respect to U will
be zero according to the method we described in Sections
3.1 and 3.2. In this case, the method degenerates to an EM-
like method in which the vc’s are effectively fixed during
the U update.

To prevent this, we ensure that vc will be included in
the basis as follows. Instead of substituting error(vc) and
dp(vc)/dvc for error(x) and df(x)/dx directly in equation
(13):

min
δvc
||error(vc)−

dp(vc)

dvc
δvc ||1 (27)

we instead solve for δ′vc = δvc + ε, ε = [10−6 . . . 10−6] in:

min
δ′vc

||(error(vc) +
dp(vc)

dvc
ε)− dp(vc)

dvc
δ′vc ||1 (28)

δ′vc will be ε at convergence, and included in the basis since
it is nonzero. We then take δvc = δ′vc − ε, and take the
derivatives of δvc to be those of δ′vc . This method works
well for including vc in the basis, although other approaches
are possible.

Section 3.3 explained that a trust region is necessary to
prevent divergence of the successive linear programming
iteration. In our general Wiberg method, both our outer
and inner iterations are successive linear programming, and
we’ve found that the trust region is necessary to prevent di-
vergence in both cases.

4.2. Wiberg L1 Bundle Adjustment

Bundle adjustment is the go-to algorithm for structure-
from-motion. Given two-dimensional observations xi,j of
three-dimensional points in an image collection, bundle ad-
justment estimates the three-dimensional position of the
each point Xj and the six-degree-of-freedom position (ro-
tation ρi and translation ti) of the camera for each image,
by minimizing:∑

i,j

||xi,j − π(R(ρi)Xj + ti)||22 (29)

where π is the perspective projection and R(ρi) is the ro-
tation matrix for Euler angles ρi. But, least squares can
be sensitive to outliers in the observations, and bundle ad-
justment in particular requires aggressive outlier detection.
Minimizing the L1 norm instead would be naturally more
robust to outliers:∑

i,j

||xi,j − π(R(ρi)Xj + ti)||1 (30)

The Huber norm has long been bundle-adjusted and pro-
vides a smooth, arbitrarily close approximation to the L1

norm[5]. However, the Wiberg and simultaneous algo-
rithms can minimize (30) without approximation, and we
present results for both general Wiberg and simultaneous
L1 bundle adjustment below, along with a comparison of
L1 and L2 bundle adjustment. For Wiberg, we’ve arbitrar-
ily chosen to minimize with respect to the individual points
in inner iterations, and to minimize with respect to the cam-
era rotations and translations in the outer iteration.

4.3. Solving Large Problems with the Primal

Linear programs can be solved using either the primal or the
dual formulation. The dual is usually faster, and we report
dual times for the synthetic experiments in Section 6. But
as shown there, solve times grow quickly with problem size
even with the dual, making large problems impractical.

In contrast, the primal solve is slower, but can return
some solution even when interrupted after a fixed time. This
stopped solution might not be optimal or even feasible, but
when used to find δx in (13), even a suboptimal solution
sometimes reduces the overall objective. Further, solving
problems with small trust regions seems to be faster. So, if a
stopped solution does not reduce the objective on one itera-
tion, a (possibly stopped) solution on a subsequent iteration
with a smaller trust region will produce a useful step. We
used this strategy successfully to estimate structure and mo-
tion from the long “rover” sequence in Section 6.2, which
includes about 700 images and 10,000 points.

5. Nested Wiberg Minimization
Our general Wiberg minimization in Section 4.1 works by
solving for V iteratively rather than in closed form. Since it

is found iteratively, V can itself be split into two sets of
variables found using the Wiberg approach. This results
in a nested Wiberg minimization that can effectively min-
imize with respect to three sets of variables. In this sec-
tion, we demonstrate this idea on L1 projective structure-
from-motion, where the three sets of unknowns are camera
matrices, three-dimensional point positions, and projective
depths.

So suppose we have three sets of variables U , V , and D;
that given U and V we minimize with respect toD in closed
form; that given U we minimize with respect to V and D
in an inner iteration; and that we minimize with respect to
U in an outer iteration. Then to minimize with respect to
U using the nonlinear L1 minimization, we’ll need the total
derivative of our predictions p with respect to U :

dp

dU
=

∂p

∂U
+

(
∂p

∂V
+
∂p

∂D

dD

dV

)
dV

dU
+
∂p

∂D

dD

dU
(31)

Equation (26) is a total derivative of p with respect to U ,
with V a function of U . Equation (31) generalizes this to
the total derivative of p with respect to U , with V a function
of U and D a function of both U and V . The factor in
parentheses is the total derivative of p with respect to V ,
with D a function of V , and reflects the nesting.

Deriving (31) requires us to expand a complex tree of
derivatives. Because of limited space, we can’t completely
explore that tree here. But to suggest the full procedure, we
summarize one path from the root of this tree as follows:

1. (31) includes the factor dV/dU .

2. dV/dU is similar to equation (23-25), and includes
d(dp(vc)/dvc)/dU .

3. dp(vc)/dvc is a total derivative and includes the factor
dD/dvc .

4. D is found using the procedure in 3.2, which also gives
the derivatives of D with respect to the coefficient ma-
trix and right-hand side there.

5. That coefficient matrix and right-hand side are func-
tions of vc, so we can use the chain rule to get the
derivative of D with respect to vc.

The derivatives at the other leaves are found similarly and
combined using the rules for matrix derivatives[3].

5.1. Wiberg L1 Projective Bundle Adjustment

The bundle adjustment in Section 4.2 can be used when the
camera calibration (e.g., focal length) is known. In con-
trast, projective bundle adjustment recovers structure and
motion from uncalibrated image sequences. A projective
reconstruction includes 3×4 camera projection matrices Ci
and 4-dimensional projective points Xj that are consistent

with the image observations and are known up to a common
4× 4 transformation. This transformation can be identified,
and the projective reconstruction upgraded to a metric re-
construction, given some knowledge of the scene geometry
or camera intrinsics.

Our objective function is:∑
i,j

||[ui,j vi,j 1]T − di,jCiXj ||1 (32)

where (ui,j , vi,j) and di,j are the two-dimensional image
location and inverse projective depth of point j in image
i. We can minimize (32) with respect to Ci, Xj , and di,j ,
using either nested Wiberg minimization or simultaneous
minimization.

We present results for both Wiberg and simultaneous
minimization in Section 6.3 below. For Wiberg, we’ve cho-
sen to find each inverse depth independently given point
and projection matrix estimates, in closed form; to find
each projection matrix given point estimates using an inner
Wiberg minimization, letting the inverse depths vary im-
plicitly; and to solve for the points in an outer Wiberg mini-
mization, letting the projection matrices and inverse depths
vary implicitly. In short, U represents the points, V the
camera matrices, and D the projective depths.

Given point and projection matrix estimates, it’s also
possible to “read off”[4] the projective depths as the last
element of CX rather than estimating them. This results in
the projective bundle adjustment algorithm given by Hartley
and Zisserman[5]. Here, we explicitly estimate the inverse
depths as an example of a nested Wiberg minimization. The
objective function using this approach is similar to that in
factorization methods for projective structure-from-motion,
which do require that the depths be explicitly estimated.
Oliensis and Hartley[9] also perform an L2 projective bun-
dle adjustment by minimizing with respect to the projection
matrices, points, and depths.

6. Results

6.1. Factorization

In this section we briefly compare Eriksson and van den
Hengel’s Wiberg L1 factorization algorithm (Section 3.4)
against the simultaneous algorithm described in Section 3.5.
The simultaneous algorithm is a stronger baseline than the
baseline Eriksson and van den Hengel consider, Ke and
Kanade’s alternative convex programming approach[6].

In an experiment similar to Eriksson and van den
Hengel’s[2], we generated 1000 random (not low-rank by
construction) measurement matrices Y with missing entries
and outliers. We factored each into rank 3 matrices using
both Wiberg and simultaneous minimization. The results
are summarized in Figure 1. Figure 1(a) shows that Wiberg

histogram, Wiberg residual − simultaneous residual

Wiberg residual − simultaneous residual

n
u

m
 t

ri
a

ls

−9 −5 −1 1 5 9
0

50

100

150

200

250

300

350

400

−390 −270 −150 −30 30 150 270 390
0

50

100

150

200

250

300

350

histogram, Wiberg iters − simultaneous iters

Wiberg iters − simultaneous iters

n
u

m
 t

ri
a

ls

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000

s
e

c
o

n
d

s
 p

e
r

s
o

lv
e

number of V columns

time per solve versus problem size
54 rows simultaneous

54 rows Wiberg
36 rows simultaneous

36 rows Wiberg
23 rows simultaneous

23 rows Wiberg
15 rows simultaneous

15 rows Wiberg
10 rows simultaneous

10 rows Wiberg
6 rows simultaneous

6 rows Wiberg

(a) (b) (c)

Figure 1. Wiberg versus simultaneous matrix factorization on 1000 synthetic examples. Wiberg produces slightly better final residuals (a)
and usually requires fewer iterations to converge (b). But, the simultaneous method has much faster individual iterations than Wiberg for
large problem sizes, with the crossover at 15 or 23 rows in U in this example (c). Note that both axes are logarithmic in (c).

produced slightly better residuals. But as shown in Figure
1(b), Wiberg often converged in many fewer iterations.

In these small problems (factoring a 7 × 12 matrix into
rank 3 factors), the linear programming solve time for the
main update step was 1.1 ms for the Wiberg step and 3.1 ms
for the simultaneous algorithm step. However, for larger
problems, the linear programming time increases quickly,
as shown in Figure 1(c). This figure plots the time for the
linear programming solve for one U update, for different
problem sizes, for both the Wiberg and simultaneous ap-
proaches. The horizontal axis gives the number of columns
in V ; the vertical axis gives the time in seconds; and the sep-
arate plots give the times for different numbers of rows inU .
Note that both axes are logarithmic. The graph reflects our
analysis in Section 3.6. Wiberg is faster than simultaneous
if U has few rows, and simultaneous is faster otherwise.

6.2. Bundle Adjustment

We compared the convergence and speed of Wiberg and si-
multaneous L1 bundle adjustment, using experiments sim-
ilar to the factorization experiments in Section 6.1. For a
wide range of initial errors in the initial camera and point
estimates, Wiberg and simultaneous both converged to the
ground truth residual, with Wiberg sometimes converging
in fewer iterations. For gross errors in the initial estimates,
Wiberg usually converged to a lower residual than simul-
taneous, but not always to the ground truth residual. The
Wiberg method linear programming solve was faster than
the simultaneous solve only for problems with 2 or 3 im-
ages, while simultaneous was faster for 5 or more images.
The supplementary material contains more detailed descrip-
tions and plots for these experiments.

We also compared the robustness of L1 and L2 bundle
adjustment, and demonstrated that the Wiberg algorithm
correctly estimates structure and motion for “rover”[13], a
real sequence with about 700 images, 10,000 points, and
extreme perspective effects (Figure 2). These experiments
are also described in the supplementary material.

6.3. Projective Bundle Adjustment

We compared the convergence of the nested Wiberg and si-
multaneous projective bundle adjustment algorithms using
synthetic experiments similar to those in Section 6.2. In
brief, for final residuals, both methods converged reliably
to the ground truth residual for a large range of initial esti-
mates; Wiberg converged more reliably for wider ranges of
projective depths; and simultaneous produced smaller resid-
uals for the largest gross errors in the initial estimates, al-
though the final residuals were not usually the ground truth
residual in these extreme examples. For iterations until con-
vergence, Wiberg reliably converged to its final residual in
fewer iterations than simultaneous. In one timing experi-
ment, we found that the Wiberg algorithm had faster lin-
ear programming solves than simultaneous for problems in-
cluding up to 51 points, and simultaneous had faster solves
for problems with more than 51 points.

The supplementary material includes more detailed de-
scriptions and plots for these experiments.

7. Conclusion

We’ve introduced general and nested Wiberg minimization,
which extend Wiberg’s approach to matrix factorization to
general functions that are nonlinear in two or three sets of
variables. We’ve focused on L1 minimization, extending
Eriksson and van den Hengel’s WibergL1 factorization, and
shown that L1 bundle adjustment and projective bundle ad-
justment can be implemented as general and nested Wiberg
minimizations, respectively. We also introduced successive
linear programming algorithms for these problems, which
estimate all of the unknowns simultaneously.

Both the Wiberg and simultaneous algorithms can con-
verge quadratically, despite the complexity of the Wiberg
approach, and both converge from a wide range of initial
estimates. Wiberg reliably converges to its final residual in
fewer iterations than simultaneous, but as Section 3.6 ex-
plains, the simultaneous approach produces a sparser linear

Figure 2. L1-Wiberg bundle adjustment reconstructs the correct structure and motion from the “rover” sequence, which includes about 700
images and 10,000 points. Left: an example image from the sequence, with tracked points shown as black dots. Right: an oblique view of
the recovered camera positions at the time of each image.

program than Wiberg, so simultaneous iterations are faster
for large problems. But as described n Section 4.3, even
very large Wiberg problems can be solved effectively by
combining primal linear program solves with the adaptive
trust region in successive linear programming.

The general Wiberg approach can be used for L1 mini-
mization, L2 minimization, and maximum likelihood esti-
mation, and there are many potential applications besides
those we’ve described. In an upcoming paper, we’ll de-
scribe Wiberg L2 bundle adjustment and Poisson matrix
factorization using Wiberg maximum likelihood estimation.

Acknowledgments. Thanks to Emilie Danna for her lin-
ear programming advice, which made the large-scale rover
result possible, as described in Section 4.3; to Jay Yagnik,
Luca Bertelli, Mei Han, Vivek Kwatra, Mohamed Eldawy,
and Rich Gossweiler for feedback on early versions of this
paper; to Jim Teza, Chris Urmson, Michael Wagner, and
David Wettergreen for capturing the “rover” sequence; and
to the anonymous reviewers for suggesting the experimen-
tal comparison between L1 and L2 bundle adjustment and
pointing out the Huber norm.

References

[1] M. S. Bazaraa, H. D. Sherali, and C. Shetty. Nonlinear pro-
gramming: theory and algorithms. Wiley, Hoboken, New
Jersey, third edition, 2006.

[2] A. Eriksson and A. van den Hengel. Efficient computation
of robust low-rank matrix approximations in the presence of
missing data using the L1 norm. In Computer Vision and
Pattern Recognition, San Francisco, CA, June 2010.

[3] P. L. Fackler. Notes on matrix calculus. http://
www4.ncsu.edu/∼pfackler/MatCalc.pdf, September 2005.
Accessed: 08/29/2011.

[4] D. A. Forsyth and J. Ponce. Computer vision: A modern
approach. Prentice Hall, Upper Saddle River, New Jersey,
2003.

[5] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge University Press, Cambridge,
UK, second edition, 2003.

[6] Q. Ke and T. Kanade. Robust L1 norm factorization in the
presence of outliers and missing data by alternative convex
programming. In Computer Vision and Pattern Recognition,
San Diego, CA, June 2005.

[7] T. Okatani and K. Deguchi. On the Wiberg algorithm for
matrix factorization in the presence of missing components.
International Journal of Computer Vision, 72(3), May 2007.

[8] T. Okatani, T. Yoshida, and K. Deguchi. Efficient algorithm
for low-rank matrix factorization with missing components
and performance comparison of latest algorithms. In Inter-
national Conference on Computer Vision, Barcelona, Spain,
November 2011.

[9] J. Oliensis and R. Hartley. Iterative extensions of the
Sturm/Triggs algorithm: convergence and nonconvergence.
IEEE PAMI, 29(12):2217–2233, December 2007.

[10] C. Poelman. The paraperspective and projective factoriza-
tion methods for recovering shape and motion. PhD thesis,
Carnegie Mellon University, 1995.

[11] F. Richards. A method of maximum-likelihood estimation.
Journal of the Royal Statistical Society, Series B (Method-
ological), 23(2):469–475, 1961.

[12] A. Ruhe and P. Wedin. Algorithms for separable nonlinear
least squares problems. SIAM Review, 22(3):318–337, 1980.

[13] D. Strelow and S. Singh. Motion estimation from image and
inertial measurements. International Journal of Robotics Re-
search, 23(12):1157–1195, December 2004.

[14] T. Wiberg. Computation of principal components when data
are missing. In Second Symposium of Computation Statistics,
pages 229–326, Berlin, 1976.

