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Abstract matching are possible even if the camera and mirror are
severely misaligned.

Recent omnidirectional camera designs aim a conven-  Previous methods for omnidirectional camera calibration
tional camera at a mirror that expands the camera’s field of have required that the mirror and camera combination be
view. This wide view is ideal for three-dimensional vision single viewpoint, i.e., that rays reflected by the mirror onto
tasks such as motion estimation and obstacle detection, buthe camera’s center also intersect at a single point inside the
these applications require an accurate model of the imag- mirror. Our calibration is performed within a general mini-
ing process. We present a full model of the imaging pro- mization framework, and easily accommodates any combi-
cess, which includes the rotation and translation between nation of mirror and camera. In particular, the mirror and
the camera and mirror, and an algorithm that determines camera may be a non-single-viewpoint combination, such
this relative position from observations of known points in as the camera described by Chahl and Srinivasan[1].

a single image. We present tests of the model and of the For single viewpoint combinations, the advantages of
calibration procedure for various amounts of misalignment the single viewpoint can be exploited only if the camera
between the mirror and camera. These tests show that theand mirror are assumed to be properly aligned. So for
algorithm recovers the correct relative position, and that these combinations, the simpler single viewpoint projection
by using the full model, accurate shape-from-motion and model, rather than the full model described here, should be
stereo matching are possible even if the camera and mirror adopted if the misalignment between the mirror and camera
are severely misaligned. is sufficiently small. In this case, the calibration algorithm
that we describe is useful as a software verification of the
alignment accuracy.

1. Introduction
2. Related work

Recent omnidirectional camera designs aim a conven-
tional camera at a mirror that expands the camera’s field of Recently, researchers have been highly active in the de-
view. This wide view is ideal for three-dimensional vision sign of omnidirectional cameras and their application. Na-
tasks such as motion estimation and obstacle detection, buyar’s design[6], which combines an orthographic camera
these applications require an accurate model of the imag-with a parabolic mirror, is the most well known. This cam-
ing process. We present a full model of the imaging pro- era achieves a single viewpoint, i.e., rays that are reflected
cess, which includes the rotation and translation betweenfrom the mirror onto the sensor all intersect in a single
the camera and mirror, and an algorithm that determinespoint inside the mirror. This property allows portions of
this relative position from observations of known points in the omnidirectional image to be remapped into conventional
a single image. perspective images, allows the image of a world point to

We include tests of the model and of the calibration pro- be computed easily, and produces circular epipolar curves.
cedure for various degrees of misalignment between theHowever, this system has lower resolution in the center of
mirror and camera. These tests show that the method rethe image than in the periphery. An alternative design that
covers the correct relative position, that the method is not has approximately uniform resolution is described by Chahl
unduly sensitive to small random errors in the calibration and Srinivasan[1], but as mentioned in the introduction, this
image observations, and that one image is sufficient to ob-combination sacrifices the single viewpoint property. The
tain an accurate calibration. The tests also show that by us-camera used in our experiments is a refinement of Chahl
ing the full model, accurate shape-from-motion and stereoand Srinivasan’s design that provides exact uniformity[7].



There has already been some work on calibration for sin-  In the following subsections we describe the reprojection
gle viewpoint cameras. Geyer and Daniilidis[2] present a of points in the camera coordinate system assuming a gen-
geometric method using two or more sets of parallel lines eral rotation and translation between the camera and mirror
in one image to determine the camera aspect ratio; a scal€3.2) and the error function we minimize to determine the
factor that is the product of the camera and mirror focal camera-to-mirror transformation (3.4). In section 3.4 we
lengths; and an image center, which can be taken to be thealso briefly describe our equiangular camera design and the
(z,y) location of the mirror focal point. Kang[4] describes effect of misalignment on the projections this camera pro-
two methods. The first recovers the image center and mirrorduces.
parabolic parameter from the image of the mirror’s circu-
lar boundary in one image; of course, this method requires3.2 Projection model
that the mirror's boundary be visible in the image. The sec-
ond method uses minimization to recover skew in addition ~ Given a camera-to-mirror transformation, computing the
to Geyer and Daniilidis's parameters. In this method the projection of a three-dimensional point with a general mir-
image measurements are point correspondences in multipleor and camera combination reduces to finding the height
image pairs. Because the advantages of single viewpointz and azimuthy of the pointm on the mirror at which the
cameras are only achieved if the mirror axis is parallel to the angle of incidence (i.e., the angle to the three-dimensional
camera axis, these methods assume that these axes are paoint p) equals the angle of reflection (i.e., the angle to the
allel rather than determining the relative rotation between camera’s center). These constraints produce a system of

the mirror and camera. two nonlinear equations inandf which we solve numeri-
The experiments presented in subsections 4.3 and 4.4 becally:

low describe the effect o'fourcallbra.tlon mode! on the accu- by-dp  —b - de by-dp  —by-de

racy of shape-from-motion and estimated epipolar curves, = = (1)

respectively. Some fundamental work on using single bs-dp by - de by dp by -de

viewpoint cameras for these tasks includes Gluckman andHere, B = {b1,bs, b3} is an orthogonal basis for a local

Nayer[3], which extended three algorithms for ego-motion coordinate system on the mirror, relative to the global mir-

estimation with conventional cameras to the single view- ror coordinate systemB is centered on the mirror point

point omnidirectional case; and Svoboda and Hlavac[10], m = m(z,6), with b; andb, spanning a plane tangent to

which describes the epipolar geometry for single viewpoint the mirror atm. dp anddc are the directions fromm to the

cameras. Our own previous work on shape-from-motion for three-dimensional point and the camera centey respec-

non-single-viewpoint cameras is described in [9]. tively, expressed in the global mirror coordinate systém.

dp, anddc are all functions of the mirror point.. Oncem

has been determined, it can be transformed from the mirror

coordinate system to the camera coordinate system and its

projection determined using perspective projection.

3.1 Overview The derivativeof a projection with respect to the com-
ponentz,, y,, z,) Of the three-dimensional poiptis also

Our projection model and calibration algorithm separate requirgd by the calibrati'on algorithm. - Differentiating the
the conventional camera intrinsics (e.g., focal length, radial gquan(:rr:s g) ”; Ignde W'tht rESpﬁftttszt' yp’_andzpl pro- ¢
distortion) from the relative position between the mirror and thucgs : ret_ x 2 linear systems that determine columns o
camera (i.e., the camera-to-mirror coordinate transforma- € derivative:

3. Method

tion). The conventional camera intrinsics can be determined om 6872 8572 5?72
using any existing method; for the experiments described T ;j aaj aaj (2)
Tp Yp Zp

here, we have used the method implemented in [5].
Once the camera intrinsics are known, the camera-to-With these derivatives in hand the derivatives of the pro-
mirror transformation can be determined by obtaining an jection with respect tp can be found using the chain rule.
image of calibration targets whose three-dimensional po- The calibration algorithm also requires the derivatives of a
sitions are known, and then minimizing the difference be- projection with respect to the camera-to-mirror parameters,
tween the observed locations of those targets in an imagewvhich we approximate using finite differences.
and the predicted reprojections, with respect to the camera- If the mirror and camera axes are assumed to be the
to-mirror transformation. Figure 1 shows two examples of same, then (1) reduces to the one-dimensional problem of
calibration images used in our experiments. The locationsdetermining the height of the mirror pointm, which can
of the three-dimensional points have been surveyed and arde solved more efficiently and robustly than the more gen-
known with an accuracy of about two centimeters. eral problem (1). For single viewpoint mirrors, this simpler



Figure 1. The calibration images for two of our test configrations are shown in (a) and (b). In (a), the
mirror and camera are closely aligned. In (b), the mirror and camera are severely misaligned,; this is
most easily seen by comparing the left and right edges of the images in (a) and (b). Image (c) shows
the observed target locations for the image in (a), which were specified by hand.

problem can solved in closed form, so when the misalign- minimize is:
ment is sufficiently small, this assumption should be made.

, - X = @ = T(Repi + te) |)? 3)
3.3 Camera-to-mirror calibration =1

wheren is the number of observed targets. Becallsge-
pends on the camera-to-mirror transformation, (3) is mini-

minimizing the error between observed projections and mized with respect to the five camera-to-mirror parameters
predicted reprojections with respect to the camera-to- 1zed Wi P v ! P
as well as the six world-to-camera parameters.

mirror transformation. Because we assume that the three-
dimensional positions of the target points are known, but not
the position of the omnidirectional camera relative to those

oints, we must also include the world-to-camera transfor- . . .
P The camera described by Chahl and Srinivasan[1] is a

mation in the minimization, although the world-to-camera ; i _ ) .
transformation is not subsequently needed and can be dispon—smgle-wewpomt camera that provides approximately

carded once calibration is complete. We use Levenberg-uniform angular image resolution. That is_, if the camera is
Marquardt to perform the minimization. Here, we briefly placed at the center of a sphere, and points placed along a

describe our error function, and refer the reader to [8] for Iongitudin_al line of the sphere_ are separated by a uniform
details of Levenberg-Marquardt, which is widely used. angular distancé\s, then th_e Images .Of thes_e points are
The world-to-camera transformation is given by the sepgrated, by some approximately uniform distance along
mappingpc = chw + tcv WhereRc(acaﬁcaVC) andtc = the Ima-.ges radial lines. . . .
(testey, tez) are the rotation and translation, respectively, E_qwangular cameras are a reflne_merjt of this design that
anda,, 3., 7. are the Euler angles specifying the rotation. provide e_xact unlformlty,_ as shown in Figure 2(a), and we
So, the world-to-camera transformation is described by ahgve designed and fabricated several of th_ese_ cameras|7].
total of six parameters. In contrast, the camera-to-mirror Figures 2(b) and 2(c) show the effects of misalignment on

transformation is described by an alternative parameteri—:jhe pr.(t))Jegt;]ons this r(]je5|gn p:jodulcees. F:)r the .er)]( peél_ments
zation, which excludes rotation about the mirror's axis. escribed here, we have used a 16 mm lens with a distance

Specifically,pp, — Ron(pe + ty) Where Ry, (B, 7m) and of 14 cm between the camera center and mirror apex. The
wrmo T m (& m m my Im

tma = (tma, tmy, tm>) are the rotation and translation, for a details of the mirror’s profile are given in [7].
total of five parameters.
Suppose thall : R3 — R? is the projection described 4. Results
in Section 3.2, which gives the image location for a three-
dimensional point expressed in the camera coordinate sys4.1 Overview
tem. It follows that the projection of a poipt specified in
the world system iSI( R.p;+t.). Then, ifz; is the observed To determine whether the calibration algorithm produces
projection of the known target locatign, the function we  the correct camera-to-mirror transformation, and whether

The camera-to-mirror transformation can be found by

3.4 Equiangular omnidirectional cameras
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Figure 2. When the equiangular camera’s mirror axis and camera axis are identical, lines in the
environment parallel to this axis appear as radial lines in the image, as shown in (a). When these
axes are not identical, the resulting image is distorted. Images (b) and (c) show the distortion that
occurs if the mirror is translated approximately 2 cm along its x axis, or rotated approximately 0.2
radians about its y axis, respectively.

Calibration A | Calibration B | Calibration C
Sequence 1 1.92 191 1.34
Sequence 2 4.01 3.85 1.40
Sequence 3 6.50 6.30 1.36

Table 1. Average reprojection errors for each of the nine calibrations, in pixels.

the full projection model improves the accuracy of shape- the ideal 14.0 cm location. Calibration C makes no assump-
from-motion and stereo matching, we have captured threetions about the relative positions of the camera and mirror,
image sequences with increasing amounts of misalignment.e., all five degrees of freedom are recovered.
between the mirror and camera axes. In Sequence 1, the
mirror and camera axes are aligned with the same accuracyl.2 Correctness of estimated parameters
we might expect from an off-the-shelf omnidirectional cam-
era. In Sequence 2, the camera is significantly rotated about ggome basic statistics from these nine calibrations are
its center of projection. This is both a translation and a ro- shown in Tables 1 and 2. Table 1 shows the average repro-
tation of the mirror in the camera coordinate system, so thejectiion errors, i.e., the average distance in pixels between
resulting distortion is a combination of those shown in Fig- the observed target image locations and those predicted by
ures 2(b) and 2(c). Sequence 3 is similar to Sequence 2ihe estimated world-to-camera and camera-to-mirror trans-
but with a more gross rotation about the camera’s center.formations. As one might expect, these show calibration
For each sequence, we have also captured a calibration immqgdels A and B, which assume that the mirror and camera
age. The calibration images for Sequences 1 and 3 are thosgyes are identical, model the observations more poorly as
shown in Figure 1(a) and 1(b); the image locations of the these two axes are rotated relative to each other, whereas
calibration targets for the image in 1(a) are shown in 1(c). model C, i.e., the full calibration, is a sufficiently strong
For each of these sequences, we have performed threenodel in these cases.
calibrations. Calibration A assumes that the mirror and Table 2 gives the resulting estimates of the camera-to-
camera have precisely the correct relative positions; for themirror transformation, which differ primarily irt,., and
mirror used in these tests, the mirror apex should be 14.0 cnthe estimated standard deviations. The standard deviations
from the camera center. Calibration B assumes that the mir-were computed empirically assuming a 0.25 pixel standard
ror and camera axes are identical, but that the mirror may beerror in the target location observations. Although one
vertically translated with respect to the camera away from might guess that simultaneously estimating the world-to-



0 (radians) ~ (radians) t, (cm) t, (cm) t, (cm)
Sequence 1 —0.0075 £ 0.00087 | —0.042 £+ 0.0017 | 0.0052 £ 0.0035 | —0.057 +0.0055 | —14.1 £0.014
Sequence 2 0.0015+ 0.0012 —0.039 £0.0023 | 0.21 +£0.0053 | —0.041 £0.0075 | —14.2 £+ 0.028
Sequence 3 0.0069 4+ 0.0013 —0.040 £0.0018 | 0.37£0.0056 | —0.054 £ 0.0056 | —14.2 £ 0.028

Table 2. Estimates and standard deviations for the five parameters of the full calibration.

Predicted Observed | Error Distance
Sequence 1 (318.7, 248.8)| (315.5, 245.0), 5.0 pixels
Sequence 2 (286.1, 246.1)| (280.5, 244.0)| 6.0 pixels
Sequence 3 (260.7, 248.2)| (258.5, 244.0)] 4.7 pixels

Table 3. The predicted and observed image locations of the mirror apex, in pixels, for the full calibra-
tion of each sequence.

camera and camera-to-mirror transformations from a singlehand in a “U” shape on the calibration lab’s optical bench.
image would produce estimates that are sensitive to obserTherefore, the images are similar to the calibration images
vation errors, these standard deviations, which are insignif-shown in Figure 1, but show the scene from a large range of
icant compared to the range of possible parameter valuesyiews. The “U” motion was chosen to ensure some camera
show that this is not the case. motion parallel to each of the walls and therefore improve

One independent check on the physical correctness ofthe estimation accuracy for points on all walls.
the full calibration can be performed by comparing the ob-  The results are summarized in Table 4. For each of the
served image location of the mirror apex to the reprojection nine tests, the average reprojection error is shown before the
of the apex predicted by the camera-to-mirror transforma- slash, and an average range error is shown for each test after
tion. These reprojections are shown in Table 3, along with the slash. The range errors are the average error in distance
the observed locations. We have taken the observed locatiorio each of the calibration targets, as measured from the mid-
to be the image location of the center of the mirror screw, dle camera position in the forty-one-image sequence. The
which attaches the mirror to the rig and passes through theresults closely follow the pattern of Table 1: range is re-
mirror axis. In each case the predicted and observed centersovered accurately in Sequence 1 for all three calibration
are quite close. models, and in all sequences for the full calibration model.
4.3 Shape-from-motion accuracy 4.4 Epipolar curve accuracy

Shape-from-motion methods recover the motion of a  Stereo ranging applications exploit the known relative
camera and the three-dimensional positions of points in theposition between two cameras to constrain the search for
camera’s environment from the two-dimensional image lo- a point from one image to a single curve in the second im-
cations of the points, i.e., from the projections. We have age. More specifically, ifL is the three-dimensional ray
implemented a shape-from-motion method for omnidirec- that results from backprojecting the image of the point in
tional cameras that is similar to Szeliski and Kang’s widely the first image, then the curve to search in the second im-
known method for conventional cameras[11]. This method age is just the reprojection df in the second image. For
uses Levenberg-Marquardt to minimize the difference be-the familiar case of perspective cameras, these reprojections
tween the observed projections and those predicted by there the epipolar lines. For non-single-viewpoint omnidirec-
camera and point estimates, and produces optimal estimategonal cameras, the curve has no analytic form, but can be
assuming uniform, isotropic gaussian observation errors. approximated by performing the backprojection and repro-

To help determine whether the camera-to-mirror trans- jection explicitly.
formation recovered by the calibration is physically accu-  If the position between the two cameras and their pro-
rate, we have computed the accuracy of the shape-from{ection model are known to sufficient accuracy, the search
motion algorithm for each of our nine pairs of sequence can be performed only along the curve, rather than, e.g., in
and calibration model. Each of the three sequences con-a band of several pixels on either side of the curve. This is
sists forty-one images, captured by moving the camera bya great computational saving and is required for real-time



Table 4. Average shape-from-motion reprojection error and point range error for each sequence.

Calibration A

Calibration B

Calibration C

Sequence 1
Sequence 2
Sequence 3

0.40 pixels /3.3 cm
1.1 pixels /9.9 cm

1.9 pixels /15.9 cm

0.41 pixels /3.4 cm
1.1 pixels /9.6 cm
1.92 pixels / 15.2 cm

0.37 pixels /2.0 cm
0.43 pixels /1.9 cm
0.38 pixels /1.9 cm

reprojection errors are given in pixels; the range errors in centimeters.

Table 5. The average distance from observed points to the corresponding epipolar curve.

Calibration A | Calibration B | Calibration C
Sequence 1 0.68 pixels 0.69 pixels 0.64 pixels
Sequence 2 1.3 pixels 1.4 pixels 0.71 pixels
Sequence 3 2.1 pixels 2.1 pixels 0.64 pixels

stereo applications. So, the accuracy of epipolar curves isReferences
another important measure of appropriateness for each cal-

ibration model.

Table 5 shows this accuracy for each of the three se-
guences and three calibration models used in our shape-
from-motion experiments. Each entry is an average over
ordered pairs of images within the sequence and over ob-
served features. The pattern is the same as in Tables 1 and[3]
4: all three calibrations are sufficiently accurate for the first
sequence, and the full calibration is sufficiently accurate for

all three sequences.

5. Conclusions

We have presented an imaging model for omnidirec-
tional cameras that accounts for the full rotation and trans-
lation between the camera and mirror, and a method for re-
covering this relative position from observations of known
points in a single image. The method is general in that any [7]
combination of camera and mirror can be calibrated, includ-
ing non-single-viewpoint combinations. For single view-
point cameras, where the advantages of a single viewpoint 8]
can be exploited only if the camera and mirror are assumed
to be aligned, this algorithm can be used to verify the align-

ment accuracy.

We have presented a sequence of experimental results us-
ing sequences with increasing amounts of misalignment be-
tween the camera and mirror. These results confirm that the
method produces an accurate estimate of the relative posi-[10
tion between the camera and mirror, that the estimate is not
sensitive to small observation errors, and that one image is
sufficient to recover the transformation. Additional exper- 11
iments show that shape-from-motion and stereo matching
can be performed accurately if the full model is used, even

if the camera and mirror are severely misaligned.
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