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Abstract

Recent omnidirectional camera designs aim a conven-
tional camera at a mirror that expands the camera’s field of
view. This wide view is ideal for three-dimensional vision
tasks such as motion estimation and obstacle detection, but
these applications require an accurate model of the imag-
ing process. We present a full model of the imaging pro-
cess, which includes the rotation and translation between
the camera and mirror, and an algorithm that determines
this relative position from observations of known points in
a single image. We present tests of the model and of the
calibration procedure for various amounts of misalignment
between the mirror and camera. These tests show that the
algorithm recovers the correct relative position, and that
by using the full model, accurate shape-from-motion and
stereo matching are possible even if the camera and mirror
are severely misaligned.

1. Introduction

Recent omnidirectional camera designs aim a conven-
tional camera at a mirror that expands the camera’s field of
view. This wide view is ideal for three-dimensional vision
tasks such as motion estimation and obstacle detection, but
these applications require an accurate model of the imag-
ing process. We present a full model of the imaging pro-
cess, which includes the rotation and translation between
the camera and mirror, and an algorithm that determines
this relative position from observations of known points in
a single image.

We include tests of the model and of the calibration pro-
cedure for various degrees of misalignment between the
mirror and camera. These tests show that the method re-
covers the correct relative position, that the method is not
unduly sensitive to small random errors in the calibration
image observations, and that one image is sufficient to ob-
tain an accurate calibration. The tests also show that by us-
ing the full model, accurate shape-from-motion and stereo

matching are possible even if the camera and mirror are
severely misaligned.

Previous methods for omnidirectional camera calibration
have required that the mirror and camera combination be
single viewpoint, i.e., that rays reflected by the mirror onto
the camera’s center also intersect at a single point inside the
mirror. Our calibration is performed within a general mini-
mization framework, and easily accommodates any combi-
nation of mirror and camera. In particular, the mirror and
camera may be a non-single-viewpoint combination, such
as the camera described by Chahl and Srinivasan[1].

For single viewpoint combinations, the advantages of
the single viewpoint can be exploited only if the camera
and mirror are assumed to be properly aligned. So for
these combinations, the simpler single viewpoint projection
model, rather than the full model described here, should be
adopted if the misalignment between the mirror and camera
is sufficiently small. In this case, the calibration algorithm
that we describe is useful as a software verification of the
alignment accuracy.

2. Related work

Recently, researchers have been highly active in the de-
sign of omnidirectional cameras and their application. Na-
yar’s design[6], which combines an orthographic camera
with a parabolic mirror, is the most well known. This cam-
era achieves a single viewpoint, i.e., rays that are reflected
from the mirror onto the sensor all intersect in a single
point inside the mirror. This property allows portions of
the omnidirectional image to be remapped into conventional
perspective images, allows the image of a world point to
be computed easily, and produces circular epipolar curves.
However, this system has lower resolution in the center of
the image than in the periphery. An alternative design that
has approximately uniform resolution is described by Chahl
and Srinivasan[1], but as mentioned in the introduction, this
combination sacrifices the single viewpoint property. The
camera used in our experiments is a refinement of Chahl
and Srinivasan’s design that provides exact uniformity[7].



There has already been some work on calibration for sin-
gle viewpoint cameras. Geyer and Daniilidis[2] present a
geometric method using two or more sets of parallel lines
in one image to determine the camera aspect ratio; a scale
factor that is the product of the camera and mirror focal
lengths; and an image center, which can be taken to be the
(x, y) location of the mirror focal point. Kang[4] describes
two methods. The first recovers the image center and mirror
parabolic parameter from the image of the mirror’s circu-
lar boundary in one image; of course, this method requires
that the mirror’s boundary be visible in the image. The sec-
ond method uses minimization to recover skew in addition
to Geyer and Daniilidis’s parameters. In this method the
image measurements are point correspondences in multiple
image pairs. Because the advantages of single viewpoint
cameras are only achieved if the mirror axis is parallel to the
camera axis, these methods assume that these axes are par-
allel rather than determining the relative rotation between
the mirror and camera.

The experiments presented in subsections 4.3 and 4.4 be-
low describe the effect of our calibration model on the accu-
racy of shape-from-motion and estimated epipolar curves,
respectively. Some fundamental work on using single
viewpoint cameras for these tasks includes Gluckman and
Nayer[3], which extended three algorithms for ego-motion
estimation with conventional cameras to the single view-
point omnidirectional case; and Svoboda and Hlavac[10],
which describes the epipolar geometry for single viewpoint
cameras. Our own previous work on shape-from-motion for
non-single-viewpoint cameras is described in [9].

3. Method

3.1 Overview

Our projection model and calibration algorithm separate
the conventional camera intrinsics (e.g., focal length, radial
distortion) from the relative position between the mirror and
camera (i.e., the camera-to-mirror coordinate transforma-
tion). The conventional camera intrinsics can be determined
using any existing method; for the experiments described
here, we have used the method implemented in [5].

Once the camera intrinsics are known, the camera-to-
mirror transformation can be determined by obtaining an
image of calibration targets whose three-dimensional po-
sitions are known, and then minimizing the difference be-
tween the observed locations of those targets in an image
and the predicted reprojections, with respect to the camera-
to-mirror transformation. Figure 1 shows two examples of
calibration images used in our experiments. The locations
of the three-dimensional points have been surveyed and are
known with an accuracy of about two centimeters.

In the following subsections we describe the reprojection
of points in the camera coordinate system assuming a gen-
eral rotation and translation between the camera and mirror
(3.2) and the error function we minimize to determine the
camera-to-mirror transformation (3.4). In section 3.4 we
also briefly describe our equiangular camera design and the
effect of misalignment on the projections this camera pro-
duces.

3.2 Projection model

Given a camera-to-mirror transformation, computing the
projection of a three-dimensional point with a general mir-
ror and camera combination reduces to finding the height
z and azimuthθ of the pointm on the mirror at which the
angle of incidence (i.e., the angle to the three-dimensional
point p) equals the angle of reflection (i.e., the angle to the
camera’s centerc). These constraints produce a system of
two nonlinear equations inz andθ which we solve numeri-
cally:

b1 · dp

b3 · dp
=
−b1 · dc

b3 · dc

b2 · dp

b3 · dp
=
−b2 · dc

b3 · dc
(1)

Here,B = {b1, b2, b3} is an orthogonal basis for a local
coordinate system on the mirror, relative to the global mir-
ror coordinate system.B is centered on the mirror point
m = m(z, θ), with b1 andb2 spanning a plane tangent to
the mirror atm. dp anddc are the directions fromm to the
three-dimensional pointp and the camera centerc, respec-
tively, expressed in the global mirror coordinate system.B,
dp, anddc are all functions of the mirror pointm. Oncem
has been determined, it can be transformed from the mirror
coordinate system to the camera coordinate system and its
projection determined using perspective projection.

The derivativeof a projection with respect to the com-
ponents(xp, yp, zp) of the three-dimensional pointp is also
required by the calibration algorithm. Differentiating the
equations (1) inz andθ with respect toxp, yp, andzp pro-
duces three2× 2 linear systems that determine columns of
the derivative:
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With these derivatives in hand the derivatives of the pro-
jection with respect top can be found using the chain rule.
The calibration algorithm also requires the derivatives of a
projection with respect to the camera-to-mirror parameters,
which we approximate using finite differences.

If the mirror and camera axes are assumed to be the
same, then (1) reduces to the one-dimensional problem of
determining the heightz of the mirror pointm, which can
be solved more efficiently and robustly than the more gen-
eral problem (1). For single viewpoint mirrors, this simpler
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Figure 1. The calibration images for two of our test configrations are shown in (a) and (b). In (a), the
mirror and camera are closely aligned. In (b), the mirror and camera are severely misaligned; this is
most easily seen by comparing the left and right edges of the images in (a) and (b). Image (c) shows
the observed target locations for the image in (a), which were specified by hand.

problem can solved in closed form, so when the misalign-
ment is sufficiently small, this assumption should be made.

3.3 Camera-to-mirror calibration

The camera-to-mirror transformation can be found by
minimizing the error between observed projections and
predicted reprojections with respect to the camera-to-
mirror transformation. Because we assume that the three-
dimensional positions of the target points are known, but not
the position of the omnidirectional camera relative to those
points, we must also include the world-to-camera transfor-
mation in the minimization, although the world-to-camera
transformation is not subsequently needed and can be dis-
carded once calibration is complete. We use Levenberg-
Marquardt to perform the minimization. Here, we briefly
describe our error function, and refer the reader to [8] for
details of Levenberg-Marquardt, which is widely used.

The world-to-camera transformation is given by the
mappingpc = Rcpw + tc, whereRc(αc, βc, γc) andtc =
(tcx, tcy, tcz) are the rotation and translation, respectively,
andαc, βc, γc are the Euler angles specifying the rotation.
So, the world-to-camera transformation is described by a
total of six parameters. In contrast, the camera-to-mirror
transformation is described by an alternative parameteri-
zation, which excludes rotation about the mirror’s axis.
Specifically,pm = Rm(pc + tm) whereRm(βm, γm) and
tm = (tmx, tmy, tmz) are the rotation and translation, for a
total of five parameters.

Suppose thatΠ : R3 7→ R2 is the projection described
in Section 3.2, which gives the image location for a three-
dimensional point expressed in the camera coordinate sys-
tem. It follows that the projection of a pointpi specified in
the world system isΠ(Rcpi+tc). Then, ifxi is the observed
projection of the known target locationpi, the function we

minimize is:

χ2 =
n∑

i=1

‖ xi −Π(Rcpi + tc) ‖2 (3)

wheren is the number of observed targets. BecauseΠ de-
pends on the camera-to-mirror transformation, (3) is mini-
mized with respect to the five camera-to-mirror parameters
as well as the six world-to-camera parameters.

3.4 Equiangular omnidirectional cameras

The camera described by Chahl and Srinivasan[1] is a
non-single-viewpoint camera that provides approximately
uniform angular image resolution. That is, if the camera is
placed at the center of a sphere, and points placed along a
longitudinal line of the sphere are separated by a uniform
angular distance∆φ, then the images of these points are
separated by some approximately uniform distance along
the image’s radial lines.

Equiangular cameras are a refinement of this design that
provide exact uniformity, as shown in Figure 2(a), and we
have designed and fabricated several of these cameras[7].
Figures 2(b) and 2(c) show the effects of misalignment on
the projections this design produces. For the experiments
described here, we have used a 16 mm lens with a distance
of 14 cm between the camera center and mirror apex. The
details of the mirror’s profile are given in [7].

4. Results

4.1 Overview

To determine whether the calibration algorithm produces
the correct camera-to-mirror transformation, and whether
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Figure 2. When the equiangular camera’s mirror axis and camera axis are identical, lines in the
environment parallel to this axis appear as radial lines in the image, as shown in (a). When these
axes are not identical, the resulting image is distorted. Images (b) and (c) show the distortion that
occurs if the mirror is translated approximately 2 cm along its x axis, or rotated approximately 0.2
radians about its y axis, respectively.

Calibration A Calibration B Calibration C
Sequence 1 1.92 1.91 1.34
Sequence 2 4.01 3.85 1.40
Sequence 3 6.50 6.30 1.36

Table 1. Average reprojection errors for each of the nine calibrations, in pixels.

the full projection model improves the accuracy of shape-
from-motion and stereo matching, we have captured three
image sequences with increasing amounts of misalignment
between the mirror and camera axes. In Sequence 1, the
mirror and camera axes are aligned with the same accuracy
we might expect from an off-the-shelf omnidirectional cam-
era. In Sequence 2, the camera is significantly rotated about
its center of projection. This is both a translation and a ro-
tation of the mirror in the camera coordinate system, so the
resulting distortion is a combination of those shown in Fig-
ures 2(b) and 2(c). Sequence 3 is similar to Sequence 2,
but with a more gross rotation about the camera’s center.
For each sequence, we have also captured a calibration im-
age. The calibration images for Sequences 1 and 3 are those
shown in Figure 1(a) and 1(b); the image locations of the
calibration targets for the image in 1(a) are shown in 1(c).

For each of these sequences, we have performed three
calibrations. Calibration A assumes that the mirror and
camera have precisely the correct relative positions; for the
mirror used in these tests, the mirror apex should be 14.0 cm
from the camera center. Calibration B assumes that the mir-
ror and camera axes are identical, but that the mirror may be
vertically translated with respect to the camera away from

the ideal 14.0 cm location. Calibration C makes no assump-
tions about the relative positions of the camera and mirror,
i.e., all five degrees of freedom are recovered.

4.2 Correctness of estimated parameters

Some basic statistics from these nine calibrations are
shown in Tables 1 and 2. Table 1 shows the average repro-
jection errors, i.e., the average distance in pixels between
the observed target image locations and those predicted by
the estimated world-to-camera and camera-to-mirror trans-
formations. As one might expect, these show calibration
models A and B, which assume that the mirror and camera
axes are identical, model the observations more poorly as
these two axes are rotated relative to each other, whereas
model C, i.e., the full calibration, is a sufficiently strong
model in these cases.

Table 2 gives the resulting estimates of the camera-to-
mirror transformation, which differ primarily intx, and
the estimated standard deviations. The standard deviations
were computed empirically assuming a 0.25 pixel standard
error in the target location observations. Although one
might guess that simultaneously estimating the world-to-



β (radians) γ (radians) tx (cm) ty (cm) tz (cm)
Sequence 1 −0.0075± 0.00087 −0.042± 0.0017 0.0052± 0.0035 −0.057± 0.0055 −14.1± 0.014
Sequence 2 0.0015± 0.0012 −0.039± 0.0023 0.21± 0.0053 −0.041± 0.0075 −14.2± 0.028
Sequence 3 0.0069± 0.0013 −0.040± 0.0018 0.37± 0.0056 −0.054± 0.0056 −14.2± 0.028

Table 2. Estimates and standard deviations for the five parameters of the full calibration.

Predicted Observed Error Distance
Sequence 1 (318.7, 248.8) (315.5, 245.0) 5.0 pixels
Sequence 2 (286.1, 246.1) (280.5, 244.0) 6.0 pixels
Sequence 3 (260.7, 248.2) (258.5, 244.0) 4.7 pixels

Table 3. The predicted and observed image locations of the mirror apex, in pixels, for the full calibra-
tion of each sequence.

camera and camera-to-mirror transformations from a single
image would produce estimates that are sensitive to obser-
vation errors, these standard deviations, which are insignif-
icant compared to the range of possible parameter values,
show that this is not the case.

One independent check on the physical correctness of
the full calibration can be performed by comparing the ob-
served image location of the mirror apex to the reprojection
of the apex predicted by the camera-to-mirror transforma-
tion. These reprojections are shown in Table 3, along with
the observed locations. We have taken the observed location
to be the image location of the center of the mirror screw,
which attaches the mirror to the rig and passes through the
mirror axis. In each case the predicted and observed centers
are quite close.

4.3 Shape-from-motion accuracy

Shape-from-motion methods recover the motion of a
camera and the three-dimensional positions of points in the
camera’s environment from the two-dimensional image lo-
cations of the points, i.e., from the projections. We have
implemented a shape-from-motion method for omnidirec-
tional cameras that is similar to Szeliski and Kang’s widely
known method for conventional cameras[11]. This method
uses Levenberg-Marquardt to minimize the difference be-
tween the observed projections and those predicted by the
camera and point estimates, and produces optimal estimates
assuming uniform, isotropic gaussian observation errors.

To help determine whether the camera-to-mirror trans-
formation recovered by the calibration is physically accu-
rate, we have computed the accuracy of the shape-from-
motion algorithm for each of our nine pairs of sequence
and calibration model. Each of the three sequences con-
sists forty-one images, captured by moving the camera by

hand in a “U” shape on the calibration lab’s optical bench.
Therefore, the images are similar to the calibration images
shown in Figure 1, but show the scene from a large range of
views. The “U” motion was chosen to ensure some camera
motion parallel to each of the walls and therefore improve
the estimation accuracy for points on all walls.

The results are summarized in Table 4. For each of the
nine tests, the average reprojection error is shown before the
slash, and an average range error is shown for each test after
the slash. The range errors are the average error in distance
to each of the calibration targets, as measured from the mid-
dle camera position in the forty-one-image sequence. The
results closely follow the pattern of Table 1: range is re-
covered accurately in Sequence 1 for all three calibration
models, and in all sequences for the full calibration model.

4.4 Epipolar curve accuracy

Stereo ranging applications exploit the known relative
position between two cameras to constrain the search for
a point from one image to a single curve in the second im-
age. More specifically, ifL is the three-dimensional ray
that results from backprojecting the image of the point in
the first image, then the curve to search in the second im-
age is just the reprojection ofL in the second image. For
the familiar case of perspective cameras, these reprojections
are the epipolar lines. For non-single-viewpoint omnidirec-
tional cameras, the curve has no analytic form, but can be
approximated by performing the backprojection and repro-
jection explicitly.

If the position between the two cameras and their pro-
jection model are known to sufficient accuracy, the search
can be performed only along the curve, rather than, e.g., in
a band of several pixels on either side of the curve. This is
a great computational saving and is required for real-time



Calibration A Calibration B Calibration C
Sequence 1 0.40 pixels / 3.3 cm 0.41 pixels / 3.4 cm 0.37 pixels / 2.0 cm
Sequence 2 1.1 pixels / 9.9 cm 1.1 pixels / 9.6 cm 0.43 pixels / 1.9 cm
Sequence 3 1.9 pixels / 15.9 cm 1.92 pixels / 15.2 cm 0.38 pixels / 1.9 cm

Table 4. Average shape-from-motion reprojection error and point range error for each sequence. The
reprojection errors are given in pixels; the range errors in centimeters.

Calibration A Calibration B Calibration C
Sequence 1 0.68 pixels 0.69 pixels 0.64 pixels
Sequence 2 1.3 pixels 1.4 pixels 0.71 pixels
Sequence 3 2.1 pixels 2.1 pixels 0.64 pixels

Table 5. The average distance from observed points to the corresponding epipolar curve.

stereo applications. So, the accuracy of epipolar curves is
another important measure of appropriateness for each cal-
ibration model.

Table 5 shows this accuracy for each of the three se-
quences and three calibration models used in our shape-
from-motion experiments. Each entry is an average over
ordered pairs of images within the sequence and over ob-
served features. The pattern is the same as in Tables 1 and
4: all three calibrations are sufficiently accurate for the first
sequence, and the full calibration is sufficiently accurate for
all three sequences.

5. Conclusions

We have presented an imaging model for omnidirec-
tional cameras that accounts for the full rotation and trans-
lation between the camera and mirror, and a method for re-
covering this relative position from observations of known
points in a single image. The method is general in that any
combination of camera and mirror can be calibrated, includ-
ing non-single-viewpoint combinations. For single view-
point cameras, where the advantages of a single viewpoint
can be exploited only if the camera and mirror are assumed
to be aligned, this algorithm can be used to verify the align-
ment accuracy.

We have presented a sequence of experimental results us-
ing sequences with increasing amounts of misalignment be-
tween the camera and mirror. These results confirm that the
method produces an accurate estimate of the relative posi-
tion between the camera and mirror, that the estimate is not
sensitive to small observation errors, and that one image is
sufficient to recover the transformation. Additional exper-
iments show that shape-from-motion and stereo matching
can be performed accurately if the full model is used, even
if the camera and mirror are severely misaligned.
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