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1 Introduction

Reconfigurable computing obtains its performance
advantage over fixed processors by creating hardware
configurations specialized for a particular application.
In some cases this advantage can be pushed even fur-
ther, by creating hardware specialized to a particular
instance of an application. For many problems where
this approach is applicable, such as automatic target
recognition, template matching, and encryption, the
problem parameters can change often even within a
single program execution, requiring periodic, and po-
tentially expensive, hardware reconfigurations.

To support these applications, we propose a method
for on-chip configuration generation, or embedded
compilation, for use with CMU’s PipeRench recon-
figurable processor. We describe PipeRench’s perfor-
mance in detail for one problem, template matching,
relative to the newest general-purpose processors, and
show how embedded compilation can be used to sup-
port multiple problem instances for a second problem,
IDEA encryption.

2 PipeRench

PipeRench [2] is an instance of the class of pipelined
reconfigurable fabrics [4]. From the point of view of
implementing runtime specialized hardware the three
most important characteristics of PipeRench are: it
has an on-chip configuration cache to support hard-
ware virtualization; it has an on-chip controller to
manage the partial runtime configuration; and its con-
figuration bitstream is compact and regular. Hard-
ware virtualization allows PipeRench to efficiently ex-
ecute configurations larger than the size of the physical
fabric, which allows runtime specialized hardware the
ability to shrink or grow without requiring any of the
non-specialized parts of the configuration to change.
The on-chip configuration cache, which is managed by
a small controller, means that there is already a source
for the templates which will be modified at runtime.

3 Template Matching

Template matching, in which an image is searched
for the regions that best match a given intensity pat-

tern (i.e., template), is a basic mechanism for track-
ing and motion estimation. Template matching is one
application where hardware specialization for a par-
ticular problem instance greatly speeds computation
and reduces the amount of required hardware. Here,
we briefly compare PipeRench’s performance for this
problem against the newest general purpose proces-
sors, which contain considerable instruction set sup-
port for template matching.

Reports from Intel describe the efficient implemen-
tation of template matching for MPEG encoding using
MMX and Streaming SIMD [3]. Timing the assembly
language routines from these reports on a 500 MHz
Pentium III gives the results in Table 1. To deter-
mine the effect of cache misses, we have performed
timings by matching over entire input images, which
produces cache misses we expect from a normal appli-
cation, and over a single location in an image, which
produces no cache misses. Table 1 shows performance
without cache misses.

The estimated times for our PipeRench implemen-
tation, also shown in Table 1, compare very favorably
with the Intel architecture measurements. The cur-
rent implementation of PipeRench, fabricated using
.35 micron technology, is more than twice as fast as the
Pentium. A hypothetical PipeRench chip fabricated
using .18 micron technology, similar to that used for
the Pentium III, with corresponding increases in cycle
time and pipeline stages, would be almost 20 times as
fast.

4 Embedded Compilation

For applications like template matching, IDEA en-
cryption, and ATR, problem parameters can change
often within a single execution. Template matching
and ATR, for instance, may match several hundred
templates for each input image. For IDEA encryption,
it is the key that changes. In each case, the problems
parameters are smaller than the resulting PipeRench
configuration, so it makes sense to download only the
parameters and to generate the correponding configu-
ration on the chip.

This embedded compilation can be achieved by
adding a small amount of hardware to PCI-PipeRench
and corresponding functionality to PCI-PipeRench’s



architecture matches per second

500 MHz MMX 1.78× 106

500 MHz Streaming SIMD 7.31× 106

.35 micron PipeRench 14.8× 106

.18 micron PipeRench 124.6× 106

Table 1: Error function computations per second for
the Intel and PipeRench arch itecutures

SwordAPI [1]. In this scheme, runtime specializable
configurations are represented as collections of 640-bit
stripe configurations, and are stored in PipeRench’s
virtual stripe cache, just as normal PipeRench pro-
grams are. In addition to the configuration, the host
supplies a program for a newly introduced microcon-
troller, and precomputed reconfiguration information
to be stored in, and accessed via, a newly introduced
lookup table. When problem parameters are received,
once before and potentially many times after execu-
tion of the application begins, the microcontroller uses
the supplied microcontroller program, the parameters,
and the lookup table information to overwrite the ap-
propriate fields of the PipeRench configuration tem-
plate, constructing a functional PipeRench program.

The SwordAPI is augmented to allow the host
to specify the microcontroller program, lookup table
data and program parameters. SwordAPI currently
specifies four packet types, including “data to be pro-
cessed,” which specifies data intended as input to the
pipeline, and “configuration,” which includes data for
the configuration controller. To these four types we
add the new types “microcontroller code,” “lookup
table data,” and “program parameters,” which are di-
rected by the input controller to the microcontroller,
the lookup table, and the microcontroller, respectively.

Our most demanding example application with re-
spect to reconfiguration is IDEA encryption. The
problem parameters for IDEA are 34 16-bit constant
multiplication operands, and each constant is used to
configure a multiplier spanning three stripes. Each
16×16-bit multiplication is broken into two 8×16-bit
multiplications by splitting the 16-bit constant into its
upper and lower bytes. To limit the number of partial
products required to implement each 8-bit multipli-
cation to a maximum of five, the 8-bit constants are
converted to CSD form, which uses 1, 0, and -1, rather
than just 0 and 1, as the digits of the word.

Filling the IDEA template configuration requires
the determination of CSD forms, shifts, and ALU op-
erations from each byte of the 16-bit word. Since these

are complex operations, we precompute this informa-
tion for each possible byte value and store the results
in the lookup table. When a new 16-bit operand is re-
ceived from the host, the CSD forms, shifts, and ALU
operations for each can be extracted from the appro-
praite lookup table word, and placed into the correct
configuration word locations. Using this scheme, the
required complexity of the controller can be greatly
reduced at the cost of a small lookup table.

5 Conclusion

Reconfigurable architectures can create hardware
specialized not only to a particular problem, but to
particular instances of a problem. However, if problem
parameters change frequently, communicating config-
uration information between the host and the fabric
can create a bottleneck that wastes the advantage of
specialization. Here, we have shown that embedded
compilation can be performed on the chip, drastically
reducing the amount of reconfiguration information
that must be sent by the host, and preserving recon-
figurable computing’s advantage for multimedia appli-
cations like template matching and encryption.
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