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Abstract
We present two algorithms for estimating sensor

motion from image and inertial measurements, which
are suitable for use with inexpensive inertial sensors
and in environments without known fiducials. The
first algorithm is a batch method, which produces op-
timal estimates of the sensor motion, scene structure,
and other parameters using measurements from the
entire observation sequence simultaneously. The sec-
ond algorithm recovers sensor motion, scene struc-
ture, and other parameters in an online manner, is
suitable for use with long or “infinite” sequences, and
handles sequences in which no feature is always visi-
ble.

We also describe initial results from running each
algorithm on a sequence for which ground truth is
available. We show that while image measurements
alone are not sufficient for accurate motion estima-
tion from this sequence, both batch and online estima-
tion from image and inertial measurements produce
accurate estimates of the sensors’ motion.

1 Introduction
Cameras and inertial sensors are each good candi-

dates for autonomous vehicle navigation because they
do not project any detectable energy into the environ-
ment, estimate six degree of freedom motion, are not
subject to outages or jamming, and are not limited
in range. In addition, cameras and inertial sensors
are good candidates to be deployed together, since in
addition to the obvious advantage of redundant mea-
surements, each can be used to resolve the ambigu-
ities in the estimated motion that result from using
the other modality alone. For instance, image mea-
surements can counteract the error that accumulates
when integrating inertial readings, and can be used to
distinguish between the effects of acceleration, gravity,
and bias in accelerometer measurements. Conversely,
inertial data can resolve the ambiguities in motion es-
timated by a camera that sees a degenerate scene, such
as one containing too few features, features infinitely
far away, or features in an accidental geometric con-
figuration; to remove the discontinuities in estimated
motion that can result from features entering or leav-
ing the camera’s field of view; to establish the global

scale; and to make motion estimation more robust to
mistracked image features.

In this paper, we present two algorithms for esti-
mating sensor motion and scene structure from image
and inertial measurements. The first is a batch algo-
rithm that generates optimal estimates of the sensor
motion, scene structure, and other parameters by con-
sidering all of the measurements from a camera, gyro,
and accelerometer simultaneously. In many applica-
tions, this optimal estimate is of interest in its own
right. In others, the optimal estimate is important in
understanding the best quality we can expect given
a particular sensor configuration, vehicle motion, en-
vironment, and set of observations, and in measuring
the inherent sensitivity of the estimate with respect
to random observation errors.

Because the batch method uses all of the measure-
ments from an observation sequence simultaneously, it
requires that all of the observations be available before
computation begins. The second algorithm is an on-
line method that estimates sensor motion, scene struc-
ture, and other parameters from image, gyro, and ac-
celerometer measurements as they become available,
and is therefore suitable for long or “infinite” image se-
quences. This algorithm is a multirate method, mean-
ing that image measurements and inertial measure-
ments are processed by separate update steps, which
allows the higher rate of inertial measurements to be
exploited. Unlike many methods for motion estima-
tion that use tracked image point features as measure-
ments, this method also includes a principled method
for incorporating points that become visible after ini-
tialization. This capability is essential for operation
on most real image sequences.

We also describe initial results from running each
algorithm on a sequence for which ground truth is
available. We show that while image measurements
alone are not sufficient for accurate motion estimation
from this sequence, both batch and online estimation
from image and inertial measurements produce accu-
rate estimates of the sensors’ motion.

2 Related Work

Most existing methods for estimating motion from
image and inertial measurements are online methods,



and in this section we review those online methods
most closely related to our own. For a discussion of
existing batch methods for estimating motion from
image and inertial measurements, see [16].

Huster and Rock[4][5] describe two filters for es-
timating the six degree of freedom motion of an au-
tonomous underwater vehicle (AUV) using gyro mea-
surements, accelerometer measurements, and the im-
age measurements of a single point in the vehicle’s
environment. In this method, the emphasis is on ex-
ploiting inertial information to reduce the visual in-
formation required for motion estimation, since visual
information is expensive to process and is minimal in
many underwater scenarios. The state and propaga-
tion model used in our online method are similar to
those described by Huster and Rock, but their use of
a single point is problematic when no one point is vis-
ible throughout the entire image sequence, and places
a higher demand on the accuracy of the inertial sen-
sors than our method. The experimental results pre-
sented in these papers were preliminary in that they
were either synthetic, or estimated only a subset of
the state.

You and Neumann[17] describe an augmented re-
ality system for estimating a user’s view relative to
known fiducials, using gyro and image measurements.
This method is simpler than Huster and Rock’s in that
it does not employ an accelerometer, which is a more
difficult instrument to incorporate than a rate gyro,
but expands the scene from a single point to a set of
known points. Rehbinder and Ghosh[14] also describe
a system for estimating motion relative to a known
scene, in this case containing three-dimensional lines
rather than point features. Rehbinder and Ghosh in-
corporate accelerometer measurements as well as gyro
and image measurements.

Qian, et al.[13] describe an extended Kalman fil-
ter (EKF) for simultaneously estimating the motion
of a sensor rig and the sparse structure of the envi-
ronment in which the rig moves, from gyro and image
measurements. The authors show motion estimation
benefits from the addition of gyro measurements in
several scenarios, including sequences with mistrack-
ing and “mixed domain” sequences containing both
sensor translation and pure rotation. This system is
more general than that described by Huster and Rock,
in that the scene is recovered, but this system makes
the implicit assumption that the scene points are visi-
ble in every image of the sequence. In later work, Qian
and Chellappa[12] also investigated motion estimation
from image and gyro measurements within a sequen-
tial Monte Carlo framework. In this case, the authors
showed that the inclusion of gyro measurements sig-
nificantly reduced the number of samples required for
accurate motion estimation.

The system described by Mukai and Ohnishi[10]
also simultaneously estimates the motion of a sen-
sor rig and the sparse structure of the environment in

which the rig moves using gyro and image measure-
ments. In Mukai and Ohnishi’s method, the motion
between pairs of images is estimated up to a scale
factor, and the estimated motion is used to deter-
mine the structure of the points seen in both images.
These pairwise estimates are then merged sequentially
by applying the scaled rigid transformation that best
aligns the recovered structures. This method handles
sequences where points do not appear in every image,
but both the pairwise motion recovery and merging
steps of this method are ad hoc. For instance, this
method does not maintain any measure of the error
in the resulting motion estimates.

3 Method

3.1 Overview
In this section we describe both our batch and on-

line algorithms for motion estimation from image, rate
gyro, and accelerometer measurements. These two
methods each estimate the camera rotation, transla-
tion, and linear velocity at the time of each image;
the three-dimensional position of each point observed
in the image sequence; the gravity direction with re-
spect to the initial camera coordinate system; and the
gyro and accelerometer biases. In addition, the online
algorithm also tracks the sensor rig’s angular velocity
and linear acceleration.

The batch method is described in section 3.2. This
method uses Levenberg-Marquardt to find estimates
of the motion and other parameters using all of the
image and inertial measurements at once. The batch
algorithm is related to the online algorithm in two
ways:

• When applied to an entire sequence of obser-
vations, the estimates produced by the batch
method provide a gold standard for the evalu-
ation of the online algorithm.

• When applied to a prefix of a sequence of obser-
vations, the batch method provides the estimates
required to initialize the online method.

The batch algorithm typically converges in just a few
iterations even if the initial estimate is poor, and can
produce good estimates even if the estimates produced
from image or inertial measurements alone are poor.
However, the time required by the batch algorithm is
cubic in both the number of images and the number
of points, so it is not applicable to long or “infinite”
sequences of observations.

In 3.3 we describe our online method, which uses an
iterated extended Kalman filter (IEKF) to estimate
the motion and other parameters. Unlike the batch
algorithm, the online algorithm requires only constant
time for each new image or inertial measurement, so
it is applicable to long sequences. However, the online
method is less robust to image feature mistracking and
erratic sensor motion than the batch method.



3.2 Batch estimation
Our batch algorithm for estimating sensor motion

uses Levenberg-Marquardt to minimize a combined
image and inertial error function. Since Levenberg-
Marquardt is widely used, we concentrate on the error
function, and refer the reader to [11] for a discussion
of Levenberg-Marquardt.

The error function is:

Ecombined = Eimage + Einertial + Eprior (1)

The image error term Eimage is:

Eimage =
∑
i,j

D(π(Cρi,ti(Xj))− xij) (2)

Eimage specifies an image reprojection error given the
six degree of freedom camera positions and three-
dimensional point positions. In this error, the sum
is over i and j, such that point j was observed in
image i. xij is the observed projection of point j in
image i. ρi and ti are the camera-to-world rotation
Euler angles and camera-to-world translation, respec-
tively, at the time of image i, and Cρi,ti

is the world-
to-camera transformation specified by ρi and ti. Xj

is the world coordinate system location of point j, so
that Cρi,ti

(Xj) is location of point j in camera co-
ordinate system i. π gives the image projection of a
three-dimensional point specified in the camera coor-
dinate system, and can be either conventional (e.g.,
orthographic or perspective) or omnidirectional.

All of the individual distance functions D are Ma-
halanobis distances. Common choices for the covari-
ances defining the distances are uniform isotropic co-
variances (e.g., with σ = 2 pixels), or directional co-
variances determined using image texture in the vicin-
ity of each feature[2][7].

The inertial error term is:

Einertial =

f−1∑
i=1

D (ρi, Iρ(τi−1, τi, ρi−1, bω))+

f−1∑
i=1

D (vi, Iv(τi−1, τi, ρi−1, bω, vi−1, g, bα))+

f−1∑
i=1

D (ti, It(τi−1, τi, ρi−1, bω, vi−1, g, bα, ti−1))

(3)

Einertial gives an error between the estimated positions
and velocities and the incremental positions and ve-
locities predicted by the inertial data. Here, f is the
number of images, and τi is the time image i was cap-
tured. ρi and ti are the camera rotation and trans-
lation at time τi, just as in the equation for Eimage

above. vi gives the camera’s linear velocity at time τi.
g, bω, and bα are the world coordinate system gravity
vector, gyro bias, and accelerometer bias, respectively.

Iρ, Iv, and It integrate the inertial observations to
produce estimates of ρi, vi, and ti from initial values
ρi−1, vi−1, and ti−1, respectively. Over an interval
[τ, τ ′] where the camera coordinate system angular
velocity is assumed constant, e.g., between the two
inertial readings or between an inertial reading and
an image time, Iρ is defined as follows:

Iρ(τi−1, τi, ρ, bω) = r(Θ(ρ) ·∆Θ(τi − τi−1, bω)) (4)

where r(Θ) gives the Euler angles corresponding to
the rotation matrix Θ, Θ(ρ) gives the rotation ma-
trix corresponding to the Euler angles ρ, and ∆Θ(∆t)
gives an incremental rotation matrix:

∆Θ(∆t, bω) = exp (∆t skew(ω)) (5)

Here,

skew(ω) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (6)

and ω = (ωx, ωy, ωz) is the camera coordinate system
angular velocity

ω = ω′ + bω (7)

and ω′ is the biased camera coordinate system angu-
lar velocity given by the gyro. Over an interval [τ, τ ′]
when the world coordinate system linear acceleration
is assumed constant, Iv and It are given by the famil-
iar equations:

Iv(τi−1, τi, . . . , bα) = v + a(τi − τi−1) (8)

and

It(τi−1, τi, . . . , t) = t+v(τi−τi−1)+
1
2
a(τi−τi−1)2 (9)

where a is the world coordinate system acceleration

a = Θ(ρ) · (a′ + bα) + g (10)

and a′ is the biased, camera coordinate system appar-
ent acceleration given by the accelerometer.

The bias prior term Eprior is:

Eprior = f · bT
αC−1

b bα (11)

The bias prior error term (11) is small if the ac-
celerometer bias is near zero, and reflects our expecta-
tion that the accelerometer voltage corresponding to
zero acceleration is close to the precalibrated value.
The bias prior is most useful in those cases where
the sensors undergo little change in rotation, in which
case, the effects of gravity and accelerometer bias can-
not be reliably distinguished from the observations,
as equation (10) shows. As above, f is the number
of images and bα is the accelerometer bias. Cb is the
accelerometer bias prior covariance, which we take to
be isotropic with standard deviations 0.5 m/s2.



As mentioned in section 3.1, the combined error
function is minimized with respect to the six degree
of freedom camera position ρi, ti at the time of each
image; the camera linear velocity vi at the time of each
image; the three-dimensional point positions of each
tracked points Xj ; the gravity direction with respect
to the world coordinate system g; and the gyro and
accelerometer biases bω and bα.

Because the algorithm uses Levenberg-Marquardt,
an initial estimate is required, but the algorithm con-
verges from a wide variety of initial estimates. The
online algorithm, described in the next section, could
be used to generate a suitable initial estimate. For the
experiments described in section 4, we have chosen the
following initial estimate:

• All camera positions are placed at the origin

• The point positions are initialized by backpro-
jecting the image position at which they first ap-
pear from the origin to a fixed distance in space.

• The velocities, gravity, and bias are all initialized
to zero.

3.3 Online estimation
Our online method is an iterated extended Kalman

filter (IEKF) in which the image and inertial mea-
surements are incorporated as soon as they arrive, in
separate measurement update steps. This approach
exploits the higher acquisition rate of inertial data to
provide motion estimates at the higher rate, and is
more principled than possible alternatives, which in-
clude queuing the inertial data until the next image
measurements are available, or assuming that the in-
ertial and image measurements are taken at the same
rate.

The state vector is:

x(τ) =



ρ(τ)
t(τ)
X0

...
Xp−1

v(τ)
bω

g
bα

ω(τ)
a(τ)



(12)

The components of the state vector are the same or
similar to those described for the batch method in sec-
tion 3.2. ρ(τ) and t(τ) are the Euler angles and trans-
lation specifying the camera-to-world transformation
at time τ ; X0, . . . , Xp−1 are the three-dimensional lo-
cations of the tracked points visible in the most re-
cent image; v(τ) and a(τ) are the linear velocity and
acceleration at time τ expressed in the world coordi-
nate system; g, bω, bα are the gravity vector direction

with respect to the first camera coordinate system, the
gyro bias, and the accelerometer bias, respectively;
and ω(τ) is the camera coordinate system angular ve-
locity at time τ .

We assume that the state x(τ) propagates accord-
ing to:

ẋ(τ) = f(x(τ)) + w (13)

where w is a zero mean Gaussian noise vector with
covariance Q. The nonzero components of f are
dt/dτ = v, dv/dτ = a, and

dρ

dτ
=

dρ

dΘ(ρ)
dΘ(ρ)

dt
(14)

As in section 3.2, Θ(ρ) is the camera-to-world rotation
matrix specified by ρ. dρ/dΘ(ρ) is a 3 × 9 matrix
that can be computed from the definition of Θ(ρ),
and dΘ(ρ)/dt is a 9× 1, flattened version of

Θ(ρ) skew(ω) (15)

where skew(ω) is given by equation (6). The noise
covariance matrix Q is zero except for the 3 × 3 sub-
matrices corresponding to ω and α, which are assumed
to be isotropic.

Assuming that the true state propagates according
to (13), a state estimate mean x̂(τ) can be propagated
using

˙̂x(τ) = f(x̂(τ)) (16)

and a state estimate covariance P (τ) propagated using

Ṗ (τ) = F (x̂(τ))P (τ) + P (τ)FT (x̂(τ)) + Q (17)

where P is the error covariance estimate, F is the
derivative of f(x̂(τ)) with respect to the state esti-
mate x̂, and Q is the noise covariance matrix. The
nonzero blocks of F are ∂2ρ/∂τ ∂ρ, which we com-
pute numerically, and

∂2t

∂τ ∂v
= I3 (18)

∂2v

∂τ ∂a
= I3 (19)

∂2ρ

∂τ ∂ω
=

dρ

dΘ(ρ)
dskew(ω)

dω
(20)

Here, dρ/dΘ(ρ) and dskew(ω)/dω are flattened, 3× 9
and 9 × 3 versions of the derivatives.

When image or inertial measurements are received,
the state estimate mean and covariance are propa-
gated from the previous measurement update time us-
ing (16) and (17), and then updated using the IEKF
measurement update. For brevity, we concentrate
here on the image and inertial measurement equa-
tions, and refer the reader to [3] for a discussion of
the IEKF measurement update.



The image measurement equation combines the
projection equations for all of the points visible in the
current image:

x0,u

x0,v

x1,u

x1,v

...
xp−1,u

xp−1,v


=



πu(Cρ,t(X0))
πv(Cρ,t(X0))
πu(Cρ,t(X1))
πv(Cρ,t(X1))

...
πu(Cρ,t(Xp−1))
πv(Cρ,t(Xp−1))


+ nv (21)

Here, (x0,u, x0,v), (x1,u, x1,v), . . . , (xp−1,u, xp−1,v) are
the projections visible in the current image. As in sec-
tion 3.2, π is the projection from a three-dimensional,
camera coordinate system point onto the image; Cρ,t

is the world-to-camera transformation specified by
the Euler angles ρ and translation t; and Xj is the
three-dimensional, world coordinate system position
of point j. nv is a vector of zero mean noise, which
we normally take to be isotropic with σ = 2 pixels.

The inertial measurement equation is:[
ω′

a′

]
=

[
ω − bω

Θ(ρ)T (a− g)− bα

]
+ ni (22)

The top and bottom component equations of (22) are
equivalent to (7) and (10), rearranged to given the bi-
ased angular velocity and biased linear acceleration.
As before, ω′ and a′ are the camera system measure-
ments from the rate gyro and accelerometer, respec-
tively. Θ(ρ) is the camera-to-world rotation specified
by the Euler angles ρ. ρ, ω, bω, g, and bα, and a are
the same members of the state that we encountered
in (12). ni is a vector of Gaussian noise, and in our
experiments we have assumed that the gyro and ac-
celerometer measurements are isotropic with σ = 0.1
radians/s and σ = 0.1 m/s2, respectively.

To generate an initial mean and covariance for the
state estimate, we use the batch method described
in 3.2. This method properly incorporates points
that are seen at the beginning of the observation se-
quence into the estimate mean and covariance. To
incorporate points that become visible after the batch
initialization has been performed, we have adapted
the stochastic map approach that Smith, et al.[15]
describe for simultaneous localization and mapping
(SLAM) from range data. We briefly describe our
use of this approach in the remainder of this section,
where we adopt a notation similar to that used in [15].

A newly visible point feature that has been ex-
tracted in the image sequence and tracked through
a small, predetermined number of frames is a candi-
date for incorporation into the state estimate. We
first estimate a mean and covariance for that point,
relative to the most recent camera coordinate system.
Assume for the moment that the camera-to-world esti-
mates corresponding to the images in which the point
has been tracked, which have been produced by the fil-

ter’s recent image measurement update steps, are cor-
rect with respect to each other. Then, a least squares
algorithm can be used to compute an estimate for
the point’s three-dimensional position zc and covari-
ance C(zc), relative to the current camera coordinate
system, from the camera-to-world estimates, the ob-
served image projections, and the assumed projection
error covariances. The resulting covariance accounts
for the noise in the image observations, but not for the
uncertainty in the current camera-to-world estimate
or for any relative error in the recent camera-to-world
estimates.

We then use the following heuristic to determine if
the point should be incorporated into the state esti-
mate. The length l of the longest axis of the covari-
ance ellipsoid described by C(zc) is computed, and the
ratio r = l/b is computed. Here b is the longest base-
line, or translation between camera centers, of any
two of the fixed camera positions used in the initial-
ization. If r is less than some threshold (e.g., 0.5),
the point is incorporated into the state estimate dis-
tribution, as described in the following paragraphs. If
not, the point will remain a candidate, and r will be
recomputed, on subsequent steps in which the point is
visible. This criterion is invariant to the global scale
of the estimate, and is nonincreasing as the number
of cameras used in the initialization increases.

Now suppose that:

• x is the filter’s state estimate before the incorpo-
ration of the new point estimate, and that C(x)
is the covariance estimate for x produced by the
most recent measurement update step

• zw is the world coordinate system point corre-
sponding to the camera coordinate system point
zc

• g(x, zc) is the rigid transformation that maps zc

to zw

• Gx and Gzc
are the derivatives of g with respect

to x and zc, respectively, evaluated at the current
estimates of x and zc

Then, Smith et al.’s method transforms the camera
coordinate system covariance C(zc) into a world co-
ordinate system covariance C(zw), and establishes a
cross-covariance C(x, zw) between x and zw, using

C(zw) = GxC(x)GT
x + GzcC(zc)GT

zc
(23)

C(x, zw) = GxC(x) (24)

The new point can then be incorporated into the state
estimate by augmenting x with zw, and C(x) with
C(zw) and C(x, zw).

This method accounts for the noise in the image
observations and for the uncertainty in the current
camera-to-world estimate, but not for any relative
error between the recent camera-to-world estimates.



In cases where relative error between the camera-to-
world estimates is negligible, this method accurately
initializes new points. However, in those cases where
there is a significant relative error between the recent
camera-to-world estimates (e.g., because of point fea-
ture mistracking), the new point will be initialized
with an overly optimistic covariance, and subsequent
state estimates will be contaminated by this error. To
address this problem, we are investigating the applica-
tion of the variable state dimension filter (VSDF)[9],
which is capable of modeling the relative error be-
tween successive camera-to-world transformations, as
an alternative to the IEKF for estimating motion from
image, gyro, and accelerometer measurements.

4 Results

4.1 Overview
This section describes the results of running our al-

gorithm on a perspective dataset obtained by mount-
ing the sensor rig on a preprogrammed robotic
arm. We compare the results from the batch image-
and-inertial method, the online image-and-inertial
method, and a batch image-only method.

4.2 Configuration
The sensor rig consists of a Sony XC-55 industrial

vision camera paired with a 6 mm lens, 3 orthogonally
mounted CRS04 rate gyros from Silicon Sensing Sys-
tems, and a Crossbow CXL04LP3 3 degree of freedom
accelerometer. The gyros and accelerometer measure
motions of up to 150 degrees per second and 4 g, re-
spectively. The camera exposure time is set to 1/200
second to reduce motion blur.

Images were captured at 30 Hertz on a PC using
a conventional frame grabber. To remove the effects
of interlacing, only one field was used from each im-
age, producing 640 × 240 pixel images. Voltages from
the gyros and the accelerometer were simultaneously
captured on the same PC at 200 Hertz with two sep-
arate Crossbow CXLDK analog-to-digital acquisition
boards.

The camera intrinsic parameters (e.g., focal length
and radial distortion) were calibrated using the
method in [6]. This calibration also accounts for
the reduced geometry of our one-field images. The
accelerometer voltage-to-acceleration calibration was
performed using a field calibration that accounts for
non-orthogonality between the individual x, y, and
z accelerometers. The individual gyro voltage-to-
rate calibrations were determined using a turntable
with a known rotational rate. The fixed gyro-to-
camera and accelerometer-to-camera rotations were
assumed known from the mechanical specifications of
the mount.

4.3 Observations
To perform experiments with known and repeat-

able motions, the rig was mounted on a Yaskawa

Perfomer-MK3 robotic arm, which has a maximum
speed of 3.33 meters per second and a payload of 2
kilograms. The programmed motion translates the
camera x, y, and z through seven pre-specified points,
for a total distance traveled of about two meters. Pro-
jected onto the (x, y) plane, these points are located
on a square, and the camera moves on a curved path
between points, producing a clover-like pattern in (x,
y). The camera rotates through an angle of 270 de-
grees about the camera’s optical axis during the course
of the motion.

The observation sequence consists of 152 images,
approximately 860 gyro readings, and approximately
860 accelerometer readings. 23 features were tracked
through the image sequence, but only 5 or 6 appear in
any one image. Points were tracked using the Lucas-
Kanade algorithm[8][1], but because the sequence con-
tains repetitive texture and large interframe motions,
mistracking was common and was corrected manu-
ally. Example images from the sequence, with tracked
points overlaid, are shown in Figure 1.

4.4 Estimates
We generated five estimates for the motion and

other parameters:

• An optimal estimate from image and inertial
measurements, using the batch algorithm de-
scribed in 3.2

• Three estimates from the online algorithm de-
scribed in section 3.3, using 15, 30, and 45 images
in the batch initialization

• A batch estimate using image observations only

In this section we briefly compare the estimated mo-
tions against ground truth.

The error statistics for the five motion estimates
are summarized in Figure 1. For the four estimates
from image and inertial data, the estimates are ac-
curate, with the optimal estimates closest to ground
truth, and with the exception of the rotation error
from the online result initialized with 30 images, the
online estimates improving as the number of images
used in the initialization increases. The x, y trans-
lations generated by the optimal image-and-inertial
algorithm and by the online algorithm using 15 im-
ages for initialization are shown in Figure 2(a), as the
dashed and solid lines, respectively. The x, y positions
of the seven known ground truths points are shown in
this figure as squares. In this table, the reported ro-
tation errors are the average scalar angles from the
angle-axis representation of the rotations that map
the estimated rotations to the corresponding ground
truth rotations.

On the other hand, the optimal motion estimate
from image measurements only is clearly wrong, and
the errors versus ground truth are much higher. This
estimate was found by applying a batch image-only



Figure 1: Images 16, 26, 36, and 46 from the 152 image sequence, with the tracked features overlaid, are shown
clockwise from the upper left. As described in section 4.2, the images are one field of an interlaced image, so
their height is half that of the full image.

algorithm to the same image measurements used to
find the optimal image-and-inertial estimate, using
the optimal image-and-inertial estimate as the initial
estimate. Applying this algorithm reduces the image
error versus the optimal image-and-inertial estimate,
but at the cost of introducing a large error in the mo-
tion estimate.

When synthetic errorless image measurements are
generated from the optimal image-and-inertial camera
and three-dimensional point estimates, and the batch
image-only algorithm is applied to a perturbed ver-
sion of the optimal image-and-inertial estimate, the
optimal image-and-inertial estimate is recovered from
the image data. It follows that, while the shape and
motion in this example are not strictly degenerate, es-
timating the motion from image observations only for
this dataset is highly sensitive to the small measure-
ment errors in the image observations. Adding inertial
data allows the correct motion to be recovered.

The x, y translations from the batch, image-only
estimate are shown as the erratic solid line in Figure
2(b). The smooth dashed line in Figure 2(b) shows the
x, y translations from the optimal image-and-inertial
estimate, and is the same as shown in Figure 2(a). As
in Figure 2(a), the x, y locations of the seven known
ground truth points are shown as squares.

5 Conclusion

Image and inertial sensing are highly complimen-
tary modalities, and we have described both batch
and online algorithms that exploit this complimen-
tary nature. Our initial experiment shows that even
in a case where optimal batch estimation from image
measurements alone is not sufficient to recover accu-
rate motion, both batch and online estimation can re-
cover accurate motion when both image and inertial
measurements are employed.

Our upcoming work will evaulate our online algo-
rithm with omnidirectional data, and begin the de-
velopment and evaluation of a hybrid batch-online al-
gorithm for estimating motion from image and iner-
tial measurements. This method will be based on the
batch method described in section 3.2 and the variable
state dimension filter (VSDF)[9], and should provide
a more accurate mechanism for initializing newly ac-
quired image point features.
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