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Abstract

Algorithms for shape-from-motion simultaneously esti-
mate camera motion and scene structure. When extended
to omnidirectional cameras, shape-from-motion algorithms
are likely to provide robust motion estimates, in particular,
because of the camera’s wide field of view. In this paper,
we describe both batch and online shape-from-motion algo-
rithms for omnidirectional cameras, and a precise calibra-
tion technique that improves the accuracy of both methods.

The shape-from-motion and calibration methods are
general and handle a wide variety of omnidirectional cam-
era geometries. In particular, the methods do not require
that the camera-mirror combination have a single center of
projection. We describe a noncentral camera that we have
developed, and show experimentally that combining shape-
from-motion with this design produces highly accurate mo-
tion esimates.

1. Introduction

Cameras are attractive sensors for autonomous vehi-
cles because they are inexpensive and lightweight; be-
cause the information provided by cameras compliments
that provided by other sensors; and because unlike laser
range finders or sonar, cameras are not inherently limited
in range. Algorithms for shape-from-motion exploit on-
board cameras by simultaneously estimating camera mo-
tion and scene structure. When extended to omnidirectional
cameras, shape-from-motion algorithms are likely to pro-
vide robust motion estimates, in particular, because of the
camera’s wide field of view. In this paper we consider om-
nidirectional shape-from-motion for motion estimation of
autonomous ground and air vehicles.

Recent omnidirectional cameras combine a conventional
camera with a mirror that multiplies the camera’s field of
view. An omnidirectional camera developed at Carnegie
Mellon is shown in Figure 1, along with a typical output im-
age. Besides producing more robust motion estimates, om-
nidirectional cameras are well-suited to autonomous navi-
gation because they can see the entire scene without the use
of an additional and potentially heavy pan-tilt mechanism.

In this paper we present two shape-from-motion algo-
rithms for omnidirectional cameras. The first is a batch
method that determines shape and motion estimates using
all of the image observations simultaneously. This method
produces optimal estimates and is a useful tool for for study-
ing fundamental aspects of the problem, including the sensi-
tivity of solutions. The second method is an online method,
which processes each image as it becomes available. Be-
cause this method does not require that all of the image data
be available before execution begins, it is suitable for use on
infinite image sequences, and is intended for deployment on
autonomous ground and air vehicles. The accuracy of both
methods is improved by a precise calibration technique for
omnidirectional cameras that we have developed. This cal-
ibration method is also described briefly.

The remaining sections are organized as follows. Section
2 summarizes previous related work on shape-from-motion
and omnidirectional cameras. Section 3 describes the rel-
evant properties of the omnidirectional camera design, our
calibration method, and the two shape-from-motion algo-
rithms. Section 4 presents experimental results and com-
pares recovered motion estimates with ground truth. The
final section offers conclusions and outlines planned future
work.

2. Related Work

Approaches to shape-from-motion for conventional cam-
eras that can be generalized to handle omnidirectional cam-
eras can be categorized as eitherbatchor online methods.
Batch methods, such as Szeliski and Kang[19], typically ap-
ply general nonlinear minimization methods to all observa-
tions simultaneously, producing optimal estimates for the
shape and motion. Bundle adjustment[20], which has long
been used in photogrammetry for mapping from aerial pho-
tographs, falls into this category. Online methods, such as
Broida, et al.[3] and Azarbayejani and Pentland[1], use a
Kalman filter to refine the motion and shape estimates as
each image arrives. The time complexity of online methods
is linear in the number of images, whereas batch methods
are typically cubic in the number of images. We have devel-
oped omnidirectional shape-from-motion algorithms based
on both of these paradigms, which we describe in the fol-



Figure 1. The omnidirectional camera used in our experiments and a typical output image.

lowing sections.

Recently, researchers have been highly active in the de-
sign of omnidirectional cameras and their application; [7]
contains a sampling of recent work is in this area. Nayar’s
design[15], which combines an orthographic camera with a
parabolic mirror, is the best known. This camera achieves a
single viewpoint, i.e., rays that are reflected from the mirror
onto the sensor all intersect in a single point inside the mir-
ror. This property allows portions of the omnidirectional
image to be remapped into conventional perspective im-
ages; allows the image of a world point to be computed
easily; and allows the use of computer vision techniques
that depend on the existence of a camera center, such as
epipolar geometry[18]. However, this system has lower res-
olution in the center of the image than in the periphery. An
alternative design which sacrifices the single viewpoint for
approximately uniform resolution is described by Chahl and
Srinivasan[4]. Our own mirror[16], which is used in the ex-
periments described here and is described in more detail in
Section 3, is a refinement of this design that provides exact
uniformity.

There has already been some work on the use of omni-
directional cameras for motion estimation and autonomous
navigation. Gluckman and Nayer[9] extended three algo-
rithms for ego-motion estimation with conventional cam-
eras to the single viewpoint omnidirectional case. Gluck-
man and Nayar’s work recovers camera motion independent
of scene structure using the differential form of the epipolar
constraint; similarly, work by Peng and Hebert[6] recov-
ers the motion using the normal form of the epipolar con-
straint, which is more suitable to large interframe motions.
Both of these methods differ from ours in that we recover
scene structure and motion simultaneously. Work by Deans
and Hebert[8] in Simultaneous Localization and Mapping
(SLAM) uses an omnidirectional camera and odometry to
simultaneously determine the motion of a rover and the lo-
cation of landmarks in the rover’s environment. Because

this work is targeted at recovering motion and landmark lo-
cations in a plane, it uses only the bearing, i.e., the radial
direction, of landmark points in the omnidirectional image.
In contrast, our method uses both components of the im-
age location but no odometry because it is targeted in part
at the recovery of six degree of freedom motion for air ve-
hicles. Systems that recover a dense description of the en-
vironment from omnidirectional images include Chahl and
Srinivasan[5], which uses the known motion of an omnidi-
rectional camera to determine the approximate range to ob-
stacles in the camera’s vicinity; and Kang and Szeliski[11]
which constructs dense depth maps from panoramic views
that are created by rotating a conventional camera.

3. Method

3.1 Shape-from-motion overview

A two-stage approach is employed when applying shape-
from-motion to video. In the first stage, sparse, two-
dimensional point features are extracted and tracked though
the image sequence. In our experiments we have used the
Lucas-Kanade tracker[12][2], which has shown good per-
formance on conventional sequences in comparative stud-
ies. Lucas-Kanade is an iterative method that tracks to sub-
pixel resolution; one-tenth of a pixel is the accuracy typi-
cally cited. In our experience the method performs well on
omnidirectional image sequences, which contain larger ro-
tational motion than is typical in conventional sequences,
although like all trackers, the method has difficulties when
tracked points become occluded or change appearance.

In the second stage, the resulting feature tracks are used
to recover the camera’s motion and the three-dimensional
locations of the tracked points by minimizing the error be-
tween the tracked point locations and the image locations
predicted by the shape and motion estimates. Because we
recover a three-parameter rotation and a three-dimensional
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Figure 2. When the equiangular camera’s mirror axis and camera axis are identical, vertical lines in the environ-
ment appear as radial lines in the image, as shown in (a). When these axes are not identical, the resulting image
is distorted. Images (b) and (c) show the distortion that occurs if the mirror is translated approximately 2 cm
along its x axis, or rotated approximately 0.2 radians about its y axis, respectively.

translation for each image, and a three-dimensional position
for each point, the total number of estimated parameters is
6f +3p, wheref is the number of images andp is the num-
ber of points. In the experiments described here, the number
of images used varies from forty-one to 150, and the num-
ber of points tracked varies from thirty-two to 112, but even
wider variability can be found in typical shape-from-motion
applications.

Shape-from-motion recovers shape and motion estimates
only up to a scaled rigid transformation. That is, applying
the same scaling and rigid transformation to all of the cam-
era and point estimates produces new estimates that explain
the observed data as well as the originals. In many appli-
cations it is not necessary to remove this ambiguity, but for
autonomous navigation, this ambiguity must be removed by
augmenting shape-from-motion with appropriate additional
sensors. We will address this issue in future work.

3.2 Equiangular omnidirectional cameras

Suppose that an omnidirectional camera is placed at the
center of a sphere, and that points placed along a longitudi-
nal line of the sphere, and separated by a uniform angular
distance∆φ, are imaged. If the camera’s resolution is uni-
form from the center of the image to the periphery, then the
resulting image points are separated by some uniform dis-
tance∆r along the image’s radial lines, as shown in Figure
2(a). We call such a cameraequiangular. We have designed
and fabricated a number of equiangular cameras, and the
camera used for the experiments described in this paper is
shown in Figure 1.

Uniform resolution is an advantage of equiangular cam-
eras over single viewpoint designs[15], but computing the

projection (i.e., the image location) of a three-dimensional
point is more difficult with an equiangular camera than with
a single viewpoint camera. This problem reduces to finding
the heightz and azimuthθ of the pointm on the mirror at
which the angle of incidence (i.e., the angle to the three-
dimensional pointp) equals the angle of reflection (i.e., the
angle to the camera’s centerc). These constraints produce
a system of two nonlinear equations inz andθ which we
solve numerically:

b1 · dp

b3 · dp
=
−b1 · dc

b3 · dc

b2 · dp

b3 · dp
=
−b2 · dc

b3 · dc
(1)

Here,B = {b1, b2, b3} is an orthogonal basis for a local
coordinate system on the mirror, relative to the global mir-
ror coordinate system.B is centered on the mirror point
m, with b1 andb2 spanning a plane tangent to the mirror
at m. dp and dc are the directions fromm to the three-
dimensional pointp and the camera centerc, respectively,
expressed in the global mirror coordinate system.B, dp,
anddc are all functions of the mirror pointm. Oncem has
been determined, the projection can be determined fromm
using the conventional projection model.

Our shape-from-motion algorithms also require the
derivative of a projection with respect to the components
(xp, yp, zp) of the three-dimensional pointp. Differentiat-
ing the equations (1) inz andθ with respect toxp, yp, andzp

produces three2× 2 linear systems that determine columns
of the derivative:

∂m

∂p
=

[
∂z
∂xp

∂z
∂yp

∂z
∂zp

∂θ
∂xp

∂θ
∂yp

∂θ
∂zp

]
(2)

With these derivatives in hand the derivatives of the projec-
tion with respect top can be found using the chain rule.



Figure 3. Targets on the wall and ceiling of the calibrated imaging lab (left) and an omnidirectional image of the
targets used for calibrating the mirror-to-camera transformation (right).

3.3 Calibration

Our camera design produces equiangular projections if
the mirror axis is identical to the camera axis. As shown in
Figures 2(b) and 2(c), translations or rotations of the mir-
ror away from this ideal position produce distortions in the
projections. The projection equations described in Section
3.2 accommodate such misalignment, but the transforma-
tion from the mirror coordinate system to the camera coor-
dinate system must be known.

A precise calibration of our camera therefore requires
that we determine the mirror-to-camera transformation in
addition to the conventional intrinsic parameters (e.g., the
focal length and radial distortion) of the camera. We de-
termine the mirror-to-camera transformation by imaging a
set of known three-dimensional points (as shown in Figure
3), and then minimizing the error between the observed and
predicted projections with respect to the mirror-to-camera
parameters. Because the mirror is a surface of revolu-
tion, the mirror-to-camera transformation is parameterized
by five rather than six parameters. Since we do not assume
the position of the camera is known with respect to the tar-
get locations, we must determine not only the position of
the mirror with respect to the camera, but the position of
the camera with respect to the target locations, which intro-
duces an additional six parameters. So, we minimize with
respect to eleven parameters total, although only five (the
mirror-to-camera parameters) are subsequently needed.

The intrinsics (e.g., focal length and radial distortion co-
efficients) of the conventional camera that views the mirror
can be determined using existing techniques. For these ex-
periments we have used the method implemented in [13].

3.4 Batch shape-from-motion

Our batch shape-from-motion algorithm uses
Levenberg-Marquardt to minimize the error between

observed projections (i.e., feature tracks) and predicted
projections with respect to the camera and point es-
timates. In this section we briefly describe our error
function, and refer the reader to [17] for the details of
Levenberg-Marquardt, which is widely used.

Suppose we havef images andp points, and that the
image location of featurei ∈ {1, . . . , p} in image j ∈
{1, . . . , f} is the two-vectorxij . Let point i be repre-
sented by the three-vectorXi giving the point’s location
in a world coordinate system. We define a camera coor-
dinate system for each image, and let camera positionj be
represented by the rotationRj(αj , βj , γj) and translation
tj = (tjx, tjy, tjz) of the world-to-camera coordinate sys-
tem transformation for imagej, whereαj , βj , andγj are
the Euler angles specifying the rotation.

Let Π : R3 7→ R2 be the projection described in the
Section 3.2, which gives the image location for a three-
dimensional point. Π depends on the camera intrinsics,
the mirror-to-camera transformation, and the mirror shape,
which are all assumed known. SinceΠ operates on points
specified in the camera coordinate system, the projection of
a pointXi specified in the world system isΠ(RjXi + tj).

The function we minimize is then:

χ2 =
∑

‖ xij −Π(RjXi + tj) ‖2 (3)

where the summation is over alli, j such that pointi was
observed in imagej. Minimizing this function provides
maximum likelihood estimates assuming uniform, isotropic
Gaussian noise in the observations. If confidences or co-
variances are available for the observations, e.g., from the
tracker, then this method can easily be modified to incorpo-
rate this information. Approximate covariances on the esti-
mated parameters are given by the inverse of the Levenberg-
Marquardt Hessian matrix when the method has converged.

To guarantee convergence, the initial estimate provided
to the method must be sufficiently close to the solution. We
currently use the estimate provided by the online method,



described in the next section, as the initial estimate to the
batch method.

3.5 Online shape-from-motion

Our online shape-from-motion method uses an extended
Kalman filter to estimate shape and motion and their co-
variances. Our method is similar to [3], but replaces the per-
spective camera model used in that method with the omnidi-
rectional camera model described in the Section 3.2. Here,
we describe the specifics of our method without describ-
ing the Kalman filter in general. See [14] for details on the
Kalman filter in general, or [3] and [1] for more detailed in-
formation on Kalman filtering for conventional shape-from-
motion.

When new observations are supplied to a Kalman filter,
the filter performs a propagation step and a measurement
step to determine a new estimate of the state and its co-
variances. In our application, the observations are the pro-
jection data for the current image, and the state estimate
consists of a six degree of freedom camera position and a
three-dimensional position for each point. So, the total size
of the state estimate is6 + 3p, wherep is the number of
tracked points.

The propagation step of a Kalman filter uses a model
to estimate the change in the state and its covariance since
the last observations, without reference to the new observa-
tions. For instance, an airplane’s estimated position might
be updated based on the position, velocity, and acceleration
estimates at the last time step, and on the length of time be-
tween updates. In our current formulation we assume that
three-dimensional points in the scene are static, but make no
explicit assumptions about the motion of the camera. There-
fore, our propagation step leaves the point and camera es-
timates unmodified, but adds a large uncertaintyα to each
of the camera parameter estimates. With this simple model,
an implicit assumption is made that the camera motion be-
tween observations is small, but this assumption is made
weaker asα is increased.

The measurement step of a Kalman filter uses a mea-
surement equation and the new observations to refine the
state estimates and covariances produced by the propaga-
tion step. For our application, the measurement equation is
the projection equationxij = Π(RjXi + tj). This mea-
surement equation is nonlinear in the estimated parameters,
so it is necessary to use the extended Kalman filter, which
linearizes the measurement equation about the current es-
timate, rather than the standard filter. In our filter essen-
tially all of the computation occurs in the measurement step,
which adjusts the camera and point estimates to fit the new
observations, since the propagation step does not modify
the estimates.

As described, the filter is susceptible to errors in the
two-dimensional tracking. To improve performance in the
face of mistracking, we discard the point with highest resid-
ual after the measurement step if the residual is over some

threshold (e.g., two pixels). The measurement step is then
re-executed from the propagation step estimate, and this
process is repeated until no points have a residual greater
than the threshold. We have found this to be an effective
method for identifying points that are mistracked, become
occluded, or are on independently moving objects in the
scene.

We initialize the filter’s point estimates by backproject-
ing the projections in the first image onto a sphere cen-
tered on the camera, and setting the point uncertainties to
be very high in the backprojection direction, and low in the
perpendicular directions. While this initialization method
would be inappropriate for scenes in which the distance to
points varies by many orders of magnitude, this method has
worked well for the sequences to which we have applied it.

4. Results

In the following subsections, we present three initial
tests of our omnidirectional shape-from-motion algorithms.
Ground truth measurements for the camera motion are
available in all three tests; in the calibrated imaging lab test,
ground truth measurements for the three-dimensional points
are also available, although motion rather than shape recov-
ery is our emphasis here.

In each test we have used the Lucas-Kanade algorithm to
perform feature extraction and tracking. The online shape-
from-motion method is then used to construct shape and
motion estimates and to identify mistracked points, and the
estimates are refined by the batch algorithm. Only those
projections identified as inliers by the online method are
used as input to the batch minimization.

As mentioned in Section 3.1, camera and point estimates
from shape-from-motion are correct only up to a scaled
rigid transformation. Therefore, before computing errors
we have transformed the camera and point estimates us-
ing the scaled rigid transformation that best aligns the es-
timates with the ground truth values. This transformation
can be found in closed form using the algorithm described
by Horn[10].

4.1 Calibrated imaging lab

As described in Section 3.3 the locations of forty-four
calibration targets on the walls and ceiling of Carnegie Mel-
lon’s calibrated imaging lab have been precisely surveyed.
In our first experiment, we have taken a sequence of forty-
one images of these targets by moving the camera in a
known pattern on the lab’s optical bench, producing a se-
quence with ground-truth values for both the motion and
the shape. The motion was a “U” shape along three edges
of the optical bench, so that the camera path contained some
motion parallel to each wall. One image from the sequence
is shown in Figure 3.

The locations of forty-two of the targets were extracted
by hand and tracked using Lucas-Kanade; tracking errors
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were detected and fixed by hand. The average absolute
depth error in the recovered points, as measured from the
centermost camera, was 2.4 cm; this is an average relative
depth error of 0.8%. The average camera translation er-
ror was 0.48 cm, which is a 0.12% error measured relative
to the total distance traveled (4.08 m). Although we don’t
know the ground truth camera rotation, we know that all
cameras had the same rotation; the average difference of the
rotation estimates from the mean rotation was 0.40 degrees.

4.2 Robocrane

The Robocrane is a twenty-foot high robotic crane (more
specifically, an inverted Stewart platform) built by the Na-
tional Institute of Standards and Technology (NIST). The
Robocrane features a large triangular platform whose six
degree of freedom position within the10 × 10 × 10 foot
workspace can be specified by computer. Because the
Robocrane’s platform can be moved to known positions in
such a large space above the ground, it is ideal for creating
simulated air vehicle motions with ground truth.

The results of one Robocrane experiment are shown in
Figure 4. In this experiment, the platform and the attached
camera were translated in a horizontal circle, with the cam-
era’s pitch and roll chosen to maintain a gaze on a sin-
gle ground point. In a sequence of 140 images, thirty-
two points were tracked, of which ten were eventually mis-
tracked by Lucas-Kanade and detected as outliers by the
Kalman shape-from-motion method. The average transla-
tion error in this example is 2.4 cm, which is a 0.79% error
relative to the total distance traveled (3.08 m); the average
rotational error is 1.61 degrees.

4.3 Ground rover

As an initial test of our algorithm’s suitability for au-
tonomous ground vehicle navigation, we have attached the

omnidirectional camera to our ground rover. The distances
and attitudes provided by the rover’s on-board encoders and
fiber optic gyro, respectively, can be integrated to provide
a dead reckoning estimate of the rover’s motion, which we
take as the ground truth motion.

The results are shown in Figure 5. In this experiment,
112 points were tracked in a sequence of 150 images. Seven
points were identified as outliers by the Kalman shape-
from-motion method. The average three-dimensional trans-
lation error in this example is 4.00 cm, which is a 1.02% er-
ror relative to the total distance traveled (3.91 m). Because
the rover moves in a plane, we assume that thez component
of the ground truth motion is zero; the average absolutez of
the estimated positions is 0.8 cm. The average error in yaw
is 0.48 degrees.

5. Conclusions

We have shown that it is possible to determine pre-
cise motion using shape-from-motion with omnidirectional
cameras, even in the presence of mistracking. In the future,
we plan to investigate: the integration of additional sen-
sors, such as inertial motion sensors, into this framework;
the reacquisition of features in long traverses; and partic-
ularly, the recovery of dense depth for obstacle detection,
using the known camera positions recovered by our current
method.

We have placed additional materials related to this pa-
per on the web athttp://www.frc.ri.cmu.edu/
∼jmishler/iros01/ . These materials include movies
of the sequences for our tests, and VRML files showing the
resulting shape and motion estimates.
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