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Abstract

This paper presents a comparison between methods that
estimate motion of a camera from a sequence of video im-
ages. We have implemented two methods– a homogra-
phy based method that assumes planar environments, and
shape-from-motion, a general method that can deal with a
fully three dimensional world. Both methods have been for-
mulated in an iterative, online form to produce estimates of
camera motion. We discuss a trade-off in accuracy and run
time efficiency based on experimental results for these two
general methods in relation to ground truth. We show how a
variation of the homography method can produce accurate
results in some cases when the environment is non-planar,
with low computational cost.

1. Introduction

Estimation of camera motion from a sequence of images
is attractive because it provides a potentially simple method
using a solid state sensor. Motion estimation based on im-
agery can be used effectively for robot navigation especially
when it is combined with other modalities such as odome-
tery and inertial measurement. Since cameras are projective
devices that map the three dimensional world onto an im-
age plane, it is intuitive that estimation of motion using a
sequence of images should consider the three dimensional
nature of the environment. However, the shape of the envi-
ronment is generally unknown and hence we would like a
method that proceeds without such explicita priori knowl-
edge.

One well known class of techniques for visually based
camera motion estimation utilizeshomographies. A ho-
mography is a3 × 3 matrix capable of describing the pro-
jective transformation of points viewed on a plane between
images. Here the visual features are assumed to lie in a
plane or a set of planes that can be determined heuristi-
cally by a separate step [4]. The general idea is that fea-
tures tracked from one frame to the next are used to com-
pute the displacement between two camera locations. These

displacements can be integrated to estimate camera motion.
In some cases, it is not possible or feasible to separately de-
termine planar patches in the scene and we would like to
estimate differential motion directly without prior knowl-
edge of the scene. Another class of techniques is called
shape-from-motion(SFM) which can deal with a three di-
mensional structure in the world by simultaneously esti-
mating camera motion and scene structure [20]. Generally
speaking, the former set of methods have low computational
complexity because they benefit from constraints on the op-
erating environment. Conversely, the latter methods have
higher complexity because of a more general representation
of the environment.

The purpose of this paper is to compare these methods
in terms of accuracy and computational complexity in vari-
ous environments that vary from completely planar to those
with unknown high curvature. In addition, we would like
to consider environments that are planar but have sparse, al-
though significant excursion from the plane. A motivating
scenario for this work is estimation of motion from small
autonomous aircraft which must by necessity be computa-
tionally efficient.

We have implemented online versions of the two meth-
ods mentioned. That is, estimates of motion are available
as images are captured. The SFM method uses an extended
Kalman filter while the homography method operates in a
memoryless frame to frame fashion. In addition, we have
implemented a variation to the homography based method
that uses the best of a number of random trials to estimate
camera motion at every frame. We discuss trade-offs using
simulation and image sequences taken from a “flying” cam-
era for which we have accurate ground truth. In addition to
comparing the iterative methods with the ground truth we
also show how the results compare to a batch implementa-
tion of SFM.

2. Related Work

In the past few years homography-based methods have
become widely used for the estimation of autonomous ve-
hicle motion. Recent work by Garcia, et al. [6] and Lots,



et al. [10], for example, utilizes homographies to estimate
the motion of underwater vehicles for mosaicking and sta-
tion keeping. The estimation of homographies between two
images is discussed by Hartley and Zisserman[7], who con-
sider linear (algebraic error), “gold standard” (geometric er-
ror), and robust techniques for the estimation, as well as
methods for recovering metric properties of the motion and
imaged scene from the estimated homography. Our own al-
gorithms for estimating the homography, and for converting
the estimated homography to a camera motion, are similar
to those described by Faugeras and Lustman[4].

Homography-based motion estimation is most applica-
ble when the imaged scene is at least approximately planar.
Algorithms for shape-from-motion estimate both camera
motion and general three-dimensional scene structure from
a video sequence. So, these algorithms are naturally robust
to deviations from, but do not exploit a priori knowledge
of, planar scene scene structure. Shape-from-motion algo-
rithms can be categorized as either online or batch methods.
Online methods, such as Broida, et al.[3] and Azarbayejani
and Pentland[1], use a Kalman filter to refine the motion and
shape estimates as each image arrives. Batch methods, such
as Szeliski and Kang[20], typically apply general nonlinear
minimization methods to all observations simultaneously,
producing optimal estimates for the shape and motion. The
time complexity of online methods is linear in the number
of images, whereas batch methods are typically cubic in the
number of images. We have implemented both online and a
batch shape-from-motion algorithms, which we describe in
the subsequent sections.

To provide some perspective, we also mention a few
other paradigms for motion estimation that we have ex-
cluded from our comparison. It is possible to compute
six-degree-of-freedom egomotion up to a scale in transla-
tion from the dense, two-dimensional optical flow between
two images [8][15]. Multilinear techniques such as funda-
mental matrix and trilinear tensor estimation make it possi-
ble to compute motion from sparse features without mak-
ing any assumptions about or simultaneously computing
structure [9][17]. However, both dense flow and multilin-
ear techniques are limited to only a few images and are
unlikely to result in accurate motion estimates when in-
tegrating over the long sequences we expect to encounter
in autonomous vehicle navigation. Factorization methods
[21][14] for shape-from-motion are highly efficient and deal
with multiple images, but require that every feature ap-
pear in every image, which limits their usefulness for au-
tonomous vehicles.

3. Method

We use a two-stage approach with our SFM and ho-
mography based methods. In the first stage (common to

both methods) sparse, two-dimensional point features are
extracted and tracked though the image sequence. In the
second stage image feature locations are processed to pro-
vide estimates of camera motion.

In our experiments we have used the Lucas-Kanade
tracker[11][2][12], which has shown good performance in
comparative studies. Lucas-Kanade is an iterative method
that tracks to subpixel resolution. Like all trackers, the
method has difficulties when tracked points become oc-
cluded or change appearance. Promising features are ex-
tracted by enumerating the goodness of all features in the
image and picking the bestn features. Since camera mo-
tion causes features to move outside the field of view, it is
necessary to find new features continually to keep the dis-
tribution of tracked features uniform throughout the image.
This is done by dividing the image into a 3 by 3 grid of
equally sized regions and extracting new features whenever
the number of features within a region falls below a prede-
fined minimum. Newly extracted features within a thresh-
olded image distance of existing features are discarded.

3.1 Shape-from-motion overview

For the second stage of the SFM solution, the result-
ing feature tracks are used to recover the camera’s motion
and the three-dimensional locations of the tracked points
by minimizing the error between the tracked point locations
and the image locations predicted by the shape and motion
estimates. Because we recover a three-parameter rotation
and a three-dimensional translation for each image, and a
three-dimensional position for each point, the total number
of estimated parameters is6f + 3p, wheref is the number
of images andp is the number of points.

SFM recovers shape and motion estimates only up to a
scaled rigid transformation. That is, applying the same scal-
ing and rigid transformation to all of the camera and point
estimates produces new estimates that explain the observed
data as well as the originals. In many applications it is
not necessary to remove this ambiguity, but for autonomous
navigation, this ambiguity must be removed by augmenting
shape-from-motion with appropriate additional sensors. We
will address this issue in future work.

The estimation process is done either as a batch method
or as an online iterative implementation.

3.1.1 Batch shape-from-motion

Our batch shape-from-motion algorithm, based on previous
work [18], uses Levenberg-Marquardt to minimize the er-
ror between observed projections (i.e., feature tracks) and
predicted projections with respect to the camera and point
estimates. We refer the reader to [16] for the details of
Levenberg-Marquardt, which is widely used.



To guarantee convergence, the initial estimate provided
to the method must be sufficiently close to the solution. We
currently use the estimate provided by the online method,
described in the next section, as the initial estimate to the
batch method.

3.1.2 Online shape-from-motion

Our online shape-from-motion method uses an extended
Kalman filter to estimate shape and motion and their co-
variances. Our method is based on previous work [18] but
uses a conventional camera. The method is similar to that
described in [3]. See [13] for details on the Kalman filter
in general, or [3] and [1] for more detailed information on
Kalman filtering for conventional shape-from-motion.

3.2 Homography-based Motion Estimation

When implementing the second stage as a homography
solution, the tracked points are used to generate frame to
frame homographies from which a frame to frame motion
estimate may be derived. Each frame to frame camera mo-
tion estimate is integrated to derive the current position es-
timate. The homography matrix is calculated using singu-
lar value decomposition(SVD) from equations derived from
the point correspondences as in [4]. A camera motion esti-
mate is then derived from the homography as per [19]. Our
current implementation assumes there is only one dominant
plane in the scene.

A homography is a3 × 3 matrix capable of describing
the projective transformation of points viewed on a plane
between images. To compute the homography a minimum
of four point (no three of which may be colinear) correspon-
dences on the viewed plane are required. In general, more
are used to make the homography generation system more
robust to tracking errors.

For additional robustness against local planar excur-
sions and tracking errors a random sampling and consensus
method(RANSAC)[5] may be applied to the homography
calculation. In this case the homography calculation is at-
tempted multiple times. Each trial starts with a homography
calculation using four randomly selected points from the
set of available feature track points. As every tracked fea-
ture has an initial coordinate in the old image and a current
coordinate in the current image, the homography may be
checked by applying the homography to the initial coordi-
nates and noting the difference between the transformed co-
ordinate and the current coordinate. For every transformed
point in agreement (to within an error threshold) the homog-
raphy gets a vote. If the number of votes exceeds another
threshold, which may be proportional or absolute, the ho-
mography is accepted and all the point correspondences in
agreement are used to calculate the final resultant homogra-

phy using SVD. If the voting threshold is not exceeded an-
other trial occurs with a new randomly selected set of point
correspondences, repeating the process. To limit execution
time an upper limit on the number of trials is used. The
thresholds discussed above may be calculated according to
[5].

4. Results

Here we present results from simulation and from lab ex-
periments. We have simulated two types of terrain with in-
creasing deviations from the plane as discussed above. Sim-
ulated motion in this terrain is used to generate synthetic
features and three algorithms are used to recover the mo-
tion. We also report on laboratory experiments in which a
camera mounted on a crane was moved along a specified
path above a terrain. Motion recovered by the three online
algorithms and a batch method are compared to the ground
truth.

4.1 Synthetic

Synthetic image features were generated to experimen-
tally test the robustness of the homography based methods.
Synthetic runs assume a downward pointing camera view-
ing a single plane. Tracking is unnecessary as the relation
between all points in the plane and the projected image are
known mathematically. In the two domains of interest the
3D model of the plane under view is gradually degraded in
two different ways: globally and locally.

The globally degraded domain distorts the viewed ideal
plane into an increasingly less planar object over its entire
surface. The globally deformed 3D surface is described by:

z = k ∗ sin(x/π) ∗ sin(y/π)

Local deformations are modeled as spikes jutting out of
the viewed plane. More specifically,z = 0 whensin(x/π)∗
sin(y/π) < 0.5 or k ∗ sin(x/π) ∗ sin(y/π) otherwise.

This description yields a mostly planar viewing object,
with 2D real estate taken up by any distortion being inde-
pendent of the level of severity.

For both domains the severity,k, of the introduced dis-
tortion is calculated as a proportion of the camera to plane
viewing distance. Experiments are done using these propor-
tions: 0.00, 0.05, 0.10, 0.15, 0.20, and 0.25.

For each frame, tracked features are calculated by pro-
jecting the viewable points in the point field (generated us-
ing one of the two surface models described) onto the view-
ing plane of a virtual camera. Field of view of the cam-
era is 90 degree, has no distortion, is located at 10 distance
units from the plane with an optical axis parallel with the Z
axis and points at the viewed plane. Excess points from



0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 E
rr

or
(m

)

Proportional Distortion

Euclidean XYZ Error vs Global Distortion

Kalman SFM
Homography+RANSAC

Homography

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 E
rr

or
(m

)

Proportional Distortion

Euclidean XYZ Error vs Local Distortion

Kalman SFM
Homography+RANSAC

Homography

Figure 1. Average error under two deformation models. (left) global variation, (right) local variation

the 3D point field outside the bounded image projection
were clipped and not recorded as tracking information for
the frame. The camera undergoes translations in the fol-
lowing frames in a spiral pattern while keeping Z constant.
For each sequence 967 frames of tracking information were
generated.

Average euclidean errors between the ground truth and
the motion estimate for each level of severity,k, and each
plane model is presented in figure 1. The local deforma-
tion results show the effectiveness of the RANSAC addi-
tion; as points violate the planar model with increasingk
they are rejected with increasing frequency leading to the
better motion estimate results. In the global deformation
cases RANSAC becomes a liability. The plane derived from
using all of the points in the non-RANSAC version remains
consistent from frame to frame while the RANSAC variant
subsamples tracked points resulting in a larger subspace of
possible planes leading to less constraints on the plane in
the next frame and on the resulting motion estimate.

4.2 Robocrane

The Robocrane is a fifteen-foot high robotic crane (more
specifically, an inverted Stewart platform) built by the Na-
tional Institute of Standards and Technology (NIST). The
Robocrane features a large triangular platform whose six
degree of freedom position within the10 × 10 × 10 foot
workspace can be specified by computer. Because the
Robocrane’s platform can be moved to known positions in
such a large space above the ground, it is ideal for creating
simulated air vehicle motions with ground truth.

For this experiment, a downward pointing black and
white analog camera (fov = 60°) was mounted on the mov-
ing platform within the Robocrane. A tarp was placed on
the concrete floor below the camera in a fairly flat manner.
Rocks of a variety of sizes (all less than 30 cm tall) were
placed atop the prepared surface. Finally, additional tex-
ture in the form of a small amount of pebbles and dirt were
distributed over some of the area.

Two PCs were used to collect data and control the

Robocrane. One PC was dedicated to the acquisition of time
stamped images while the second controlled the Robocrane
and logged the ground truth of the camera at 5 Hz. The
path specified for the robocrane was specified in 10 cm in-
crements and starts with a downward Z motion, not quite
along the Z axis, to a height approximately 1 m from the
floor then continues in a spiral pattern at constant height.

Feature tracking information was generated using a fea-
ture extractor and Lucas-Kanade tracker discussed previ-
ously. This one set of tracking data was fed into the four
methods up for comparison: homography, homography +
RANSAC, Kalman SFM, and batch SFM. All the meth-
ods used 498 frames of tracking data except the batch SFM
method which was downsampled by three, leaving 164
frames, due to computational limitations.

Resulting paths of each motion estimation method were
then fitted to the crane ground truth path using the best
scaled rigid transformation minimizing the error between
the two. XY results of the four estimators are shown in
figure 4 along with a XYZ Euclidean error histogram in fig-
ure 2.
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Figure 3. Three Images from the Robocrane sequence.

4.3 Computation

The platform used to compute the motion estimates was
a Pentium III running at 800 MHz. Total time required to
generate each of the motion estimates for the Robocrane
experimental sequence are summarized in table 1 and does
not include time required for feature tracking. Our feature
tracker uses approximately 20 ms per image when tracking
80 features. Two cases are given for the random sampling
modification; the worst occurs when the number of trials in
the homography calculation is allowed to reach the maxi-
mum allotment per frame(25). Typically, consensus may be
reached within 5-7 iterations.

Table 1. Average running time per frame for
Robocrane experiment motion estimates.

Method msec per Frame
Homography 28

Homography+RANSAC Typical 157
Homography+RANSAC Worst 588

Kalman SFM 1050
Batch SFM ∼44000

5. Conclusions

We have implemented two methods of estimating camera
motion from a sequence of video imagery based on vastly
different paradigms and have tested these within varying
terrain conditions. One method, based on homography,
assumes that all feature points lie in a plane while the
other is able to deal with a general 3D world. This pa-
per has compared the trade-offs between these methods in
terms of accuracy and computational efficiency. The simple
homography-based method works fast and accurately when
the planar assumption is valid. Accuracy degrades as the
excursions from the plane become significant. We find that
the other method based on an online SFM implementation is
able to deal with both types of variations from the plane and
estimates motion with low error. However, the SFM method

is relatively computationally expensive. In some cases,
when the terrain is mostly planar but has sparse, although
non-trivial excursions (as would be posed for example, by
randomly placed trees observed by an aircraft) a variation
of the homography method that uses RANSAC can provide
significantly improved performance. This variation can pro-
vide accuracy that is approximately equal to online SFM but
with lower computational cost. We also note that the mo-
tion estimates produced from the online methods are sig-
nificantly lower in computational cost to batch SFM but
without a proportional degradation in accuracy. In future
work we seek to improve the implementations for both on-
line methods to operate at a higher throughput. We will also
integrate the estimates from vision based motion estimation
with other sensor modalities such as odometry and inertial
measurement.
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