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Abstract

Two approaches to improving the accuracy of camera
motion estimation from image sequences are the use of om-
nidirectional cameras, which combine a conventional cam-
era with a convex mirror that magnifies the field of view, and
the use of both image and inertial measurements, which are
highly complementary. In this paper, we describe optimal
batch algorithms for estimating motion and scene structure
from either conventional or omnidirectional images, with or
without inertial data.

We also present a method for motion estimation from in-
ertial data and the tangential components of image projec-
tions. Tangential components are identical across a wide
range of conventional and omnidirectional projection mod-
els, so the resulting method does not require any accurate
projection model. Because this method discards half of the
projection data (i.e., the radial components) and can oper-
ate with a projection model that may grossly mismodel the
actual camera behavior, we call the method “reckless” mo-
tion estimation, but we show that the camera positions and
scene structure estimated using this method can be quite
accurate.

1. Introduction

Recent omnidirectional cameras combine a conventional
camera with a convex mirror that multiplies the mirror’s
field of view, typically to 360 degrees in azimuth and 90-
140 degrees in elevation. Omnidirectional images are likely
to increase the accuracy of camera motion estimation, be-
cause features viewed over the omnidirectional field of view
constrain the camera’s position from a wider range of di-
rections, and because each tracked feature is likely to be
seen through a larger percentage of the image sequence. A
second approach to increasing the accuracy of camera mo-
tion estimation is to use both image and inertial measure-
ments, which are highly complementary. For instance, in-
ertial measurements can resolve ambiguities in image-only

motion estimation that result from viewing a degenerate
scene, too few features, of features in an accidental geomet-
ric configuration; reduce the discontinuity in the estimated
motion that results from features entering and leave the field
of view; establish the global scale; and make motion esti-
mation more robust to mistracked features. On the other
hand, image measurements can counteract error accumula-
tion that results from integrating inertial data alone, and can
be used to separate the effects of acceleration, gravity, and
accelerometer bias in accelerometer readings.

We have developed optimal batch algorithms for estimat-
ing sensor motion and scene structure from both conven-
tional and omnidirectional images, with or without inertial
measurements. In this paper, we present these algorithms
and experimental results that show the relative advantages
of omnidirectional images, inertial measurements, and both
omnidirectional images and inertial measurements in com-
bination. The algorithm for estimating sensor motion from
image and inertial data is particularly strong in that it can
produce good estimates even if the estimates produced by
image or inertial measurements alone are poor, and typi-
cally converges in just a few iterations even if the initial
estimate is poor.

We also present a more radical method for motion esti-
mation from image and inertial measurements. This method
uses only the tangential components of the image pro-
jections, which are identical across a wide range of con-
ventional and omnidirectional projection models, and can
therefore operate without any accurate projection model.
Because this method discards half of the projection data
(i.e., the radial components) and can operate with a pro-
jection model that may grossly mismodel the actual camera
behavior, we call the method “reckless” motion estimation,
but the camera positions and scene structure recovered us-
ing this method were quite accurate in our initial test, which
we also describe.

For brevity, we have excluded a discussion of related
work. Please see [5] and [6] for reviews of the existing work
most closely related to our approach to motion from omnidi-
rectional cameras, and to our method for motion estimation



from image and inertial measurements, respectively.

2. Method

2.1 Optimal motion from image data

Our method for estimating camera motion and scene
structure from images alone is similar to nonlinear shape-
from-motion and bundle adjustment, and uses Levenberg-
Marquardt to minimize:

Evisual =
∑
i,j

D(π(Cρi,ti
(Xj)) − xij) (1)

Evisual specifies an image reprojection error given the six
degree of freedom camera positions and three-dimensional
point positions. In this error, the sum is overi andj, such
that pointj was observed in imagei. xij is the observed
projection of pointj in imagei. ρi andti are the camera-
to-world rotation Euler angles and camera-to-world transla-
tion, respectively, at the time of imagei, andCρi,ti

is the
world-to-camera transformation specified byρi andti. Xj

is the world coordinate system location of pointj, so that
Cρi,ti(Xj) is location of pointj in camera coordinate sys-
temi.

π gives the image projection of a three-dimensional point
specified in the camera coordinate system, and can be ei-
ther conventional (e.g., orthographic or perspective) or om-
nidirectional. Our omnidirectional projection model is de-
scribed in [5]. This projection model handles noncentral
omnidirectional cameras, in which the camera-mirror com-
bination does not have a single effective viewpoint, and om-
nidirectional cameras in which the camera and mirror are
misaligned by a general but known (i.e., calibration) 6 DOF
transformation.

All of the individual distance functionsD are Maha-
lanobis distances. Common choices for the covariances
defining the distances are uniform isotropic covariances, or
directional covariances determined using image texture in
the vicinity of each feature[3][2].

The error is minimized with respect to the six degree of
freedom camera positionρi, ti at the time of each image,
and with respect to the three-dimensional positionXj of
each tracked point.

Motion estimation from image data alone does not re-
cover the overall scale of the estimated motion and scene.
That is, scaling the recovered camera translations and three-
dimensional points by any factor produces an estimate that
explains the observations as well as the original estimate.
Motion estimation from image and inertial data, which we
describe in subsection 2.2 below, does recover the scale fac-
tor.

2.2 Estimation from image and inertial data

Image and inertial data are highly complementary
modalities for sensor motion estimation. Our algorithm for
estimating sensor motion from image and inertial data ex-
tends the image only algorithm described in section 2.1, and
uses Levenberg-Marquardt to minimize:

Ecombined = Evisual + Einertial + Eprior (2)

The visual error termEvisual is the same as that described
in section 2.1. The inertial error term is:

Einertial =

f−1∑
i=1

D (ρi, Iρ(τi−1, τi, ρi−1))+

f−1∑
i=1

D (vi, Iv(τi−1, τi, ρi−1, vi−1, g, b))+

f−1∑
i=1

D (ti, It(τi−1, τi, ρi−1, vi−1, g, b, ti−1))

(3)

Einertial gives an error between the estimated positions and
velocities and the incremental positions and velocities pre-
dicted by the inertial data. Here,f is the number of im-
ages, andτi is the time imagei was captured.ρi andti are
the camera rotation and translation at timeτi, just as in the
equation forEvisual above.vi gives the camera’s linear ve-
locity at timeτi. g andb are the world coordinate system
gravity vector and accelerometer bias, respectively.

Iρ, Iv, andIt integrate the inertial observations to pro-
duce estimates ofρi, vi, and ti from initial valuesρi−1,
vi−1, andti−1, respectively. Over an interval[τ, τ ′] where
the camera coordinate system angular velocity is assumed
constant, e.g., between the two inertial readings or between
an inertial reading and an image time,Iρ is defined as fol-
lows:

Iρ(τ, τ ′, ρ) = r(Θ(ρ) · ∆Θ(τ ′ − τ)) (4)

wherer(Θ) gives the Euler angles corresponding to the ro-
tation matrixΘ, Θ(ρ) gives the rotation matrix correspond-
ing to the Euler anglesρ, and∆Θ(∆t) gives an incremental
rotation matrix:

∆Θ(∆t) = exp

∆t

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (5)

and whereω = (ωx, ωy, ωz) is the camera coordinate sys-
tem angular velocity measurement from the rate gyro. Over
an interval[τ, τ ′] when the world coordinate system linear
acceleration is assumed constant,Iv andIt are given by the
familiar equations:

Iv(τ, τ ′, ρ, v, g) = v + a(τ ′ − τ) (6)



and

It(τ, τ ′, ρ, v, g, t) = t + v(τ ′ − τ) +
1
2
a(τ ′ − τ)2 (7)

wherea is the world coordinate system acceleration

a = Θ(ρ) · (a′ + b) + g (8)

anda′ is the camera coordinate system apparent accelera-
tion given by the accelerometer.

The bias prior termEprior is:

Eprior = f · bT C−1
b b (9)

The bias prior error term (9) is small if the bias is near zero,
and reflects our expectation that the accelerometer voltage
corresponding zero acceleration is close to the precalibrated
value. As above,f is the number of images andb is the ac-
celerometer bias.Cb is the accelerometer bias prior covari-
ance, which we take to be isotropic with standard deviations
0.5 m/s2.

The combined error function is minimized with respect
to the six degree of freedom camera positionρi, ti at the
time of each image; the camera linear velocityvi at the time
of each image; the three-dimensional point positions of each
tracked pointsXj ; the gravity direction with respect to the
world coordinate systemg; and optionally, the accelerome-
ter biasb.

2.3 Reckless motion estimation

The normalized, or unitless, perspective projection is the
most common projection model in shape-from-motion:

πperspective(x, y, z) = (x/z, y/z) (10)

Under this projection model, the image projection lies on a
ray from the image center specified by the angle:

θ = atan2(y/z, x/z) = atan2(y, x) (11)

If camera focal length is modeled, the projection becomes:

πperspective(f, x, y, z) = (fx/z, fy/z) (12)

The projection then lays on the ray specified by the angle:

θ = atan2(fy/z, fx/z) = atan2(y, x) (13)

That is, the ray from the image center on which the pro-
jection lies is unchanged if focal length is modeled, and is
independent of the specific focal length. Similarly, it is easy
to see that the ray on which the projection lies is unchanged
if radial distortion is modeled and is independent of the spe-
cific radial distortion values.

The normalized orthographic and weak perspective pro-
jection models are:

πorthographic(x, y, z) = (x, y) (14)

πweak−perspective(x, y, z) = (x/zo, y zo) (15)

wherezo is the distance to the origin in the camera coordi-
nate system. In these two cases, the projections lie on the
rays specified by

θ = atan2(y, x) (16)

θ = atan2(y/zo, x/zo) = atan2(y, x) (17)

respectively. So, the ray on which the projection lies is un-
changed whether perspective, weak perspective, or ortho-
graphic projection is assumed. In fact, the same is true
for any reasonable single viewpoint or noncentral omnidi-
rectional projection model, as long as the camera’s optical
axis and the mirror’s axis of revolution are assumed to be
aligned.

So, if we consider only the tangential component of each
projection, it doesn’t matter what intrinsics calibration, pro-
jection model, or camera type we assume. When cou-
pled with inertial data, the tangential components provide
enough information to perform motion estimation without
any accurate camera model. We call motion estimation
from the tangential components and inertial data “reckless”
motion estimation, since it throws away half of the image
data and uses a projection model that may grossly mismodel
the camera’s actual behavior, but as we’ll show in section
3.3, motion estimated in this manner can be quite accurate.

Reckless motion estimation might be advantageous for
conventional cameras when the camera’s focal length or ra-
dial distortion are unknown, or when the camera’s field of
view is extreme (e.g., some lenses have a field of view of
more than 180 degrees) and may not be well modeled by
perspective projection with radial distortion. Reckless mo-
tion estimation might be advantageous for omnidirectional
cameras when the mirror’s profile is unknown, or when the
distance between the camera and mirror is unknown.

The algorithm described in section 2.2 can easily be
adapted to perform this estimation by elongating the ob-
served projection covariances so that they lie along the
image’s radial lines, as illustrated in Figure 1. Choosing
the projection covariances in this way specifies that repro-
jection error along a projection’s radial component should
be discounted, while reprojection error along the projec-
tion’s tangential component should be weighted as normal.
While the ideal projection distribution for reckless motion
estimation is uniform along the radial component, we’ve
found that approximating the ideal distributions by direc-
tional Gaussians is convenient and sufficient for proof of
concept, as shown in section 3.3.

On the other hand, without inertial data the tangential
components are not sufficient to recover the six degree of
freedom camera positions and three-dimensional point po-
sitions: any estimate that aligns all of the camera optical
axes and all of the three-dimensional points along a single
common axis will reproject the points to the image centers,
which are trivially on the same rays as the observed projec-
tions.



Figure 1. The algorithm in section 2.2 can be used to perform reckless motion estimation if the
observed projection covariances are chosen to lie along the image’s radial lines, as shown in these
two example images. For clarity, the covariances have been shown here with a relatively small
variance in the radial direction. The variances actually used in our tests are (2.0 pixels) 2 in the
tangential direction and (10 8 pixels) 2 in the radial direction.

3. Results

3.1 Relative estimation accuracy

To evaluate the relative advantages of omnidirectional
image and inertial measurements, we captured one conven-
tional dataset and one omnidirectional dataset, both with
corresponding inertial measurements, by mounting our sen-
sor rig on a Yaskawa Performer-MK3 robotic arm. In this
section we describe the preprogrammed motion and result-
ing observations, but for brevity we exclude a discussion of
the sensor rig and its calibration. Please see [6] for a more
detailed description of the sensor rig and its calibration.

The arm provides known and repeatable motions, and
has a maximum speed of 3.33 meters per second and a pay-
load of 2 kilograms. The programmed motion translates the
camerax, y, andz through seven pre-specified points, for a
total distance traveled of about three meters. Projected onto
the (x, y) plane, these points are located on a square, and the
camera moves on a curved path between points, producing a
clover-like pattern in (x, y). The camera rotates through an
angle of 270 degrees about the camera’s optical axis during
the course of the motion.

Each sequence consists of 152 images, approximately
860 gyro readings, and approximately 860 accelerometer
readings. In the perspective sequence, 23 features were
tracked, but only 5 or 6 appear in any one image. In the om-
nidirectional sequence, the wide field of view enabled track-
ing of 6 points throughout the entire sequence, although
individual points sometimes temporarily left the camera’s
vertical field of view. In both sequences, the points were
tracked using the Lucas-Kanade algorithm[4][1], but be-
cause the sequences contain repetitive texture and large in-
terframe motions, mistracking was common and was cor-
rected manually.

As described in Section 2, our image-only method esti-
mates the six degree of freedom position at the time of each
image and the world coordinate system location of each
tracked point. Our image-and-inertial method estimates the

six degree of freedom position and linear velocity of the
camera at the time of each image, the world coordinate sys-
tem location of each tracked point, the world gravity vector,
and the accelerometer bias. For the sake of brevity, we will
concentrate here on the estimated (x, y) translation.

Some aspects of the (x, y) components of the estimated
motion are shown graphically in Figure 2. The (x, y) trans-
lation estimated using both visual and inertial data is shown
as a smooth dashed line in the left hand plot of Figure 2 for
the perspective sequence, and in the right hand plot for the
omnidirectional sequence. In each plot the seven squares
show the known (x, y) positions of the camera’s ground
truth motion. A summary of the error in these estimates
versus ground truth is given in Table 1.

Similarly, the (x, y) translations estimated using visual
measurements only for the perspective and omnidirectional
sequences are shown as the erratic solid lines in the left and
right plots, respectively, of Figure 2. The summary of the
error in these estimates is also given in Table 1. For the
perspective sequence, the poor estimate is due to a combi-
nation of few points visible in each frame, and the planarity
of the points. This leads to a large ambiguity between each
camera position’s rotation and translation, which is resolved
by the rotational rate observations in the visual-with-inertial
estimate. In the omnidirectional sequence, the overall shape
of the visual-only estimate is nearly correct because all of
the points are seen throughout most of the sequence. Some
large scale errors are present due to points temporarily leav-
ing the camera’s vertical field of view, and the small scale
erratic motion in the estimate is due to vibration between
the omnidirectional camera rig’s two components, the cam-
era and mirror.

Each plot in Figure 2 also shows the (x, y) components
of the motion that results from integrating the inertial mea-
surements only, as a diverging dash-dotted line. This diver-
gence is due to noise in the inertial readings and small er-
rors in the estimated initial velocity, gravity, and accelerom-
eter bias used to integrate the data. The divergence differs
slightly in the two plots because the accelerometer noise and
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Figure 2. The estimated ( x, y) camera translations for the perspective sequence (left) and the omnidi-
rectional sequence (right). The visual-only, inertial-only, and visual-with-inertial translation estimates
are shown as the solid, dashed, and dash-dotted lines, respectively. The boxes show the known ( x,
y) ground truth positions.

rotation error (radians) translation error (centimeters)scale error
perspective, image only 0.252 / 0.372 23.5 / 33.1 N/A
omnidirectional, image only 0.094 / 0.148 8.54 / 12.9 N/A
perspective, image and inertial 0.108 / 0.136 4.03 / 6.60 -5.5%
omnidirectional, image and inertial 0.106 / 0.137 3.67 / 4.72 +2.2%

Table 1. Errors versus ground truth for the four estimates. Each entry gives the average error before
the slash and the maximum error after the slash.

estimate errors differ in the two datasets.
For these datasets, omnidirectional data is an improve-

ment over conventional data in both the image-only and
image-and-inertial cases, and image-and-inertial is an im-
provement over image-only in both the conventional and
omnidirectional cases. As one might expect, of all four
cases, the omnidirectional, image-and-inertial estimate is
closest to ground truth.

3.2 Effect of bias estimation

During the minimization of (1) and (2) we usually
choose to fix any problem parameters that can be calibrated
beforehand, such as the camera intrinsics, gyro voltage-to-
rate and accelerometer voltage-to-acceleration mappings,
and omnidirectional camera camera-to-mirror transforma-
tion. However, the accelerometer voltage corresponding
to zero acceleration typically changes between successive

power ups and with temperature, which makes precalibrat-
ing the accelerometer problematic. This problem makes the
estimation of the accelerometer bias, or difference between
the calibrated zero acceleration voltage and actual zero ac-
celeration voltage, desirable.

Table 2 summarizes the results of running the datasets
described in section 3.1, using the image-with-inertial al-
gorithm with and without bias estimation. The second half
of this table is the same as the second half of Table 1, and
is included for convenience. In both the conventional and
omnidirectional cases, estimating the bias improves the es-
timate relative to ground truth, and in the omnidirectional
dataset the effect is dramatic.

3.3 Reckless motion estimation

In this subsection we give the results from an initial test
of reckless motion estimation. In this test, the sensor con-



rotation error (radians) translation error (centimeters)scale error
perspective, bias assumed zero 0.171 / 0.271 4.44 / 7.70 -5.6%
omnidirectional, bias assumed zero 0.111 / 0.148 7.27 / 9.49 +24.6%
perspective, bias estimated 0.108 / 0.136 4.03 / 6.60 -5.5%
omnidirectional, bias estimated 0.106 / 0.137 3.67 / 4.72 +2.2%

Table 2. Errors versus ground truth for the two datasets, without and with bias estimation. Each entry
gives the average error before the slash and the maximum error after the slash.

figuration and calibration are the same as those used in sec-
tions 3.1 and 3.2, and omnidirectional images are used, but
the acquired dataset differs in three ways from the one used
in sections 3.1 and 3.2:

• In the sequence in sections 3.1 and 3.2, the camera’s
optical axis always points in the same direction, but
since tangential components alone give no information
about the camera’s translation along the optical axis,
the visual data is not useful for reducing inertial inte-
gration drift in that direction. The sequence used in
this section emphasizes rotation along all three sensor
axes, which is required to reduce drift along the cam-
era’s optical axis when reckless motion estimation’s
tangential projection model is used. For the same rea-
son, the initial velocity was fixed to (0, 0, 0) during
minimization.

• The sequence includes 36 points tracked across 94 im-
ages, which is a large number of features compared to
the Spartan datasets described in sections 3.1 and 3.2.

• Accurate ground truth is not available for the motion,
so we have used camera and point positions estimated
from the image and inertial algorithm described in sec-
tion 2.2, using the correct (i.e., equiangular omnidirec-
tional) projection model with isotropic projection co-
variances, as ground truth.

For the reckless motion estimation, we have assumed or-
thographic projection and projection covariances with vari-
ance (2 pixels)2 in the tangential direction and variance (108

pixels)2 in the radial direction. Images 37 and 68 from the
sequence are shown in Figure 1, with the projection covari-
ances overlaid. The camera intrinsics are assumed to be 1
pixel focal length and 0 radial distortion, whereas the cali-
brated values are 2210 pixels focal length and -0.157 radial
distortion.

An initial estimate far from the correct estimate is used:

• All camera positions are placed at the origin

• The point positions are initialized by backprojecting
the image position at which they first appear from the
origin to a fixed distance in space, using the ortho-
graphic projection model. For points that appear in

the first image, the resulting initial estimates are con-
sistent with the tangential components observed in the
first image.

• The velocities, gravity, and bias are all initialized to
zero.

The average and maximum rotation errors in the reckless
estimate, relative to the isotropic ground truth estimate, are
0.109 radians and 0.128 radians, respectively. The average
and maximum translation errors are 4.05 cm and 9.56 cm,
respectively, relative to a total distance traveled of about 2
meters. The average and maximum point errors are 7.83 cm
and 26.1 cm, respectively. The scale error is +8.1%.

As an additional note, in our test we have used omni-
directional images and an orthographic projection model.
But, the principle stays the same for combination of camera
and projection model, and we would expect similar reckless
estimation results from any combination.
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