

# Google General and Nested Wiberg Minimization

**Dennis Strelow** 

Sometimes we have to minimize a function of two sets of unknowns:

$$\min_{U,V} f(U, V)$$

Often these are chicken and egg problems.



In problems like these, we could alternately minimize wrt U, V, U, V, ...

- expectation-maximization
- alternating least squares
- alternating linear programming

We could minimize wrt *U*, *V* simultaneously:

- Levenberg-Marquardt
- Newton-Raphson
- successive linear programming

Or, we could eliminate *V* from the problem:

- given *U*, minimize *f* wrt *V*
- linearize the solution V wrt U
- minimize f(U, V(U)) wrt U only

(Wiberg 1976) proposed this idea for  $L_2$  (least squares) matrix factorization when some matrix entries are not known

Wiberg beats simultaneous and alternating methods?

- (Okatani and Deguchi 2007, Okatani et al. 2011) rediscover
   Wiberg factorization
  - convergence beats Levenberg-Marquardt
- (Eriksson and van den Hengel 2010) L₁-Wiberg factorization
  - more robust to outliers than L<sub>2</sub>
  - o convergence beats alternated quadratic programming
  - convergence beats successive linear programming

But, so far Wiberg has only been matrix factorization

linear in both U and V

This talk: general Wiberg minimization

- handles f nonlinear in both U and V
- focuses on the hardest case,  $L_1$  minimization

So, options for minimizing f(U, V):

|              | linear in $U$ or $V$ |                |           |  |
|--------------|----------------------|----------------|-----------|--|
|              | minimize $L_2$       | minimize $L_1$ | MLE       |  |
| simultaneous | <b>√</b>             | <b>√</b>       | <b>√</b>  |  |
| alternating  | ✓                    | <b>√</b>       | ✓         |  |
| Wiberg       | Wiberg 1976          | Eriksson 2010  | this work |  |

|              | nonlinear in both $U$ and $V$ |                |           |  |
|--------------|-------------------------------|----------------|-----------|--|
|              | minimize $L_2$                | minimize $L_1$ | MLE       |  |
| simultaneous | ✓                             | ✓              | ✓         |  |
| alternating  | ✓                             | ✓              | ✓         |  |
| Wiberg       | this work                     | this work      | this work |  |

#### **Outline**

 $\rightarrow$  Wiberg  $L_1$  matrix factorization (Eriksson)

General Wiberg minimization (Strelow)

Nested Wiberg minimization (Strelow)

(Eriksson and van den Hengel 2010) extended Wiberg matrix factorization to  $L_1$ 

- 1: Get the derivatives of a linear program solution wrt the linear program coefficients
- 2: Minimize the  $L_1$  norm of a linear function using linear programming
  - Get the solution's derivative using 1 + chain rule
- 3: Iteratively minimize  $||Y UV(U)||_1$  using successive linear programming, wrt U only
  - To minimize wrt U only, use V(U) and dV/dU from 2

Their method does factor the matrix, and can converge quadratically!

They demonstrated affine SFM using the factorization:

- 36 images, 319 points, 18 minutes to solve
- artifical outliers added to 10% of the image observations





Their convergence beat alternated quadratic programming...



...and in our experiments, their method also beat successive linear programming:





Is Wiberg faster than minimizing wrt *U*, *V* simultaneously?

- both methods add an unknown for every observation
  - In Wiberg, num remaining unknowns >> dim V
- Wiberg linear program is denser

So, successive linear programming iterations faster for > 20 rows in *U* 

#### **Outline**

Wiberg  $L_1$  matrix factorization (Eriksson)

→ General Wiberg minimization (Strelow)

Nested Wiberg minimization (Strelow)

Matrix factorization is linear in both *U* and *V* 

Wiberg factorization:

- solves for V in closed form
- but, solves for *U* iteratively

So, we can easily tweak the method to minimize general nonlinear functions of *U* 

But, *f* would still have to be linear in *V*.



To handle f nonlinear in both U and V:

- Find V iteratively
- But then what is *dV/dU*?
  - $\circ$  V is found iteratively, but each step  $\Delta V$  is found in closed form
  - $\circ$  take  $dV/dU = d\Delta V/dU$  for the last  $\Delta V$

Like Wiberg matrix factorization, general Wiberg minimization works and can converge quadratically!

Example: Wiberg  $L_1$  bundle adjustment

Real example, "rover"

• about 700 images, 10K 3-D points



Two bundle adjustment experiments

"Bundle Adjustment 1": low initial residuals





"Bundle adjustment 2": high initial residuals



Speed: simultaneous iterations faster than Wiberg for > 5 images

#### **Outline**

Wiberg  $L_1$  matrix factorization (Eriksson)

General Wiberg minimization (Strelow)

→ Nested Wiberg minimization (Strelow)

If we have three unknowns...

$$\min_{U,V,D} f(U, V, D)$$

...can general Wiberg be applied recursively to eliminate two?

$$\min_{U} f(U, V(U), D(V(U)))$$

Yes...nested Wiberg does work and can also converge quadratically!

The derivatives become exponentially more complicated.



#### Wiberg projective bundle adjustment

- uncalibrated camera
- additional set of unknowns: projective depths

#### Assignments:

• U: points

V: cameras

D: projective depths

Two projective bundle adjustment experiments

"Projective Bundle Adjustment 1": low initial residuals





"Projective Bundle Adjustment 2": high initial residuals



Speed: Wiberg faster for < 51 points

#### **Work since**

Wiberg  $L_2$  and maximum likelihood estimation

- Wiberg L<sub>2</sub> bundle adjustment
- Wiberg L<sub>2</sub> projective bundle adjustment
- Wiberg Poisson matrix factorization

#### Thanks!

- Emilie Danna
  - linear programming advice → success on real example
- Jay Yagnik, Mei Han, Luca Bertelli, Vivek Kwatra, Rich Gossweiler, Mohamed Eldawy
  - feedback on paper, talk
- Jim Teza, David Wettergreen, Chris Urmson, Mike Wagner
  - o captured rover sequence
- anonymous CVPR reviewers
  - $\circ L_1$  versus  $L_2$  bundle adjustment