

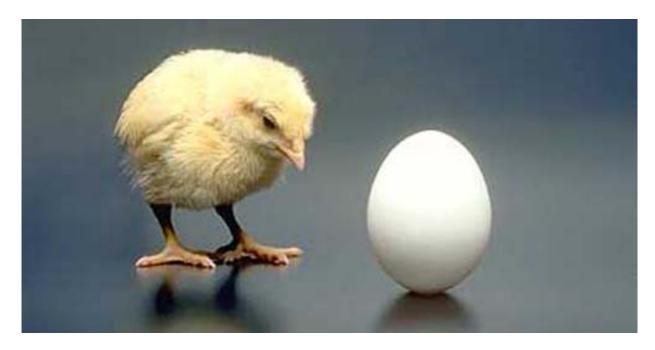
Google General and Nested Wiberg Minimization

Dennis Strelow

Sometimes we have to minimize a function of two sets of unknowns:

$$\min_{U,V} f(U, V)$$

Often these are chicken and egg problems.



In problems like these, we could alternately minimize wrt U, V, U, V, ...

- expectation-maximization
- alternating least squares
- alternating linear programming

We could minimize wrt *U*, *V* simultaneously:

- Levenberg-Marquardt
- Newton-Raphson
- successive linear programming

Or, we could eliminate *V* from the problem:

- given *U*, minimize *f* wrt *V*
- linearize the solution V wrt U
- minimize f(U, V(U)) wrt U only

(Wiberg 1976) proposed this idea for L_2 (least squares) matrix factorization when some matrix entries are not known

Wiberg beats simultaneous and alternating methods?

- (Okatani and Deguchi 2007, Okatani et al. 2011) rediscover
 Wiberg factorization
 - convergence beats Levenberg-Marquardt
- (Eriksson and van den Hengel 2010) L₁-Wiberg factorization
 - more robust to outliers than L₂
 - o convergence beats alternated quadratic programming
 - convergence beats successive linear programming

But, so far Wiberg has only been matrix factorization

linear in both U and V

This talk: general Wiberg minimization

- handles f nonlinear in both U and V
- focuses on the hardest case, L_1 minimization

So, options for minimizing f(U, V):

	linear in U or V			
	minimize L_2	minimize L_1	MLE	
simultaneous	√	√	√	
alternating	✓	√	✓	
Wiberg	Wiberg 1976	Eriksson 2010	this work	

	nonlinear in both U and V			
	minimize L_2	minimize L_1	MLE	
simultaneous	✓	✓	✓	
alternating	✓	✓	✓	
Wiberg	this work	this work	this work	

Outline

 \rightarrow Wiberg L_1 matrix factorization (Eriksson)

General Wiberg minimization (Strelow)

Nested Wiberg minimization (Strelow)

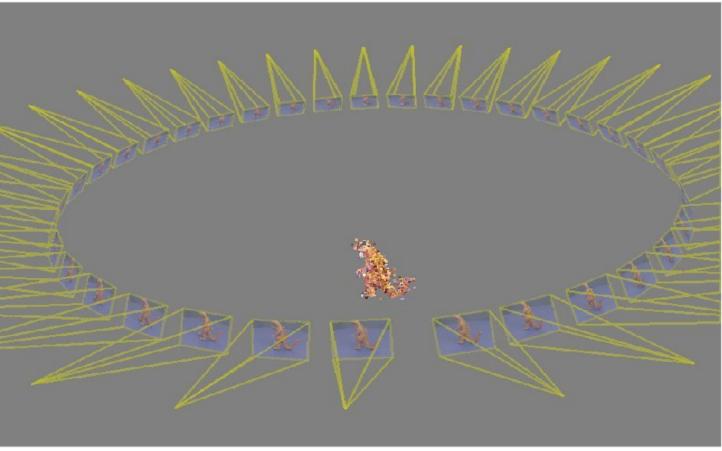
(Eriksson and van den Hengel 2010) extended Wiberg matrix factorization to L_1

- 1: Get the derivatives of a linear program solution wrt the linear program coefficients
- 2: Minimize the L_1 norm of a linear function using linear programming
 - Get the solution's derivative using 1 + chain rule
- 3: Iteratively minimize $||Y UV(U)||_1$ using successive linear programming, wrt U only
 - To minimize wrt U only, use V(U) and dV/dU from 2

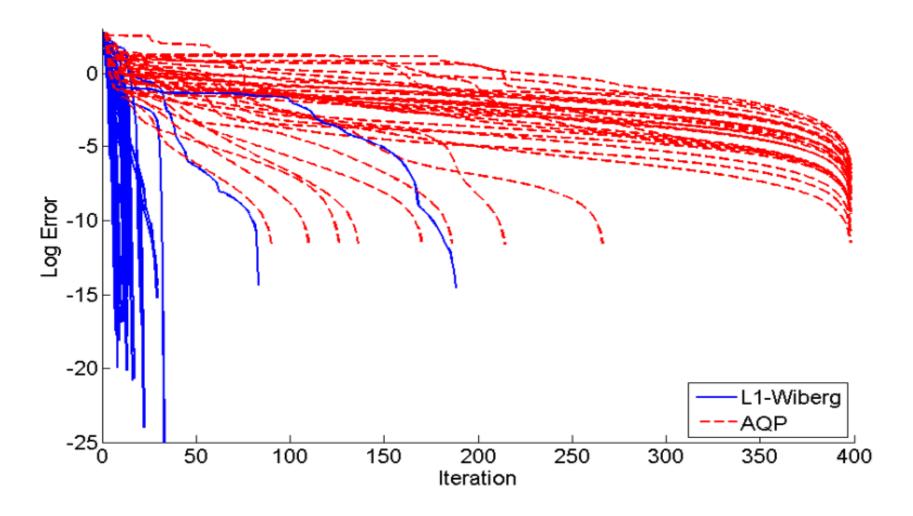
Their method does factor the matrix, and can converge quadratically!

They demonstrated affine SFM using the factorization:

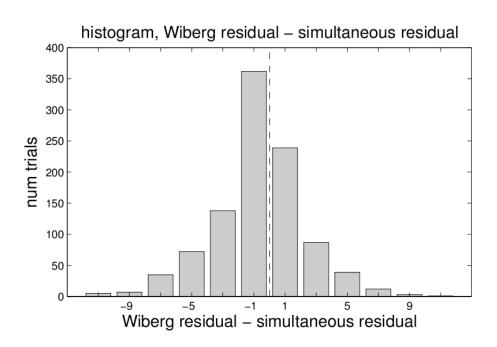
- 36 images, 319 points, 18 minutes to solve
- artifical outliers added to 10% of the image observations

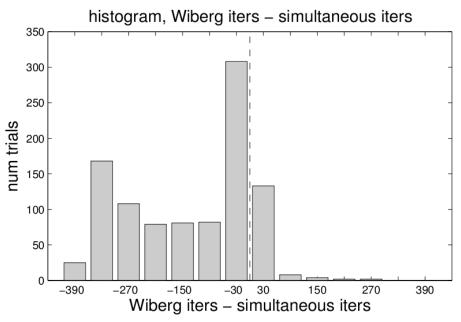


Their convergence beat alternated quadratic programming...



...and in our experiments, their method also beat successive linear programming:





Is Wiberg faster than minimizing wrt *U*, *V* simultaneously?

- both methods add an unknown for every observation
 - In Wiberg, num remaining unknowns >> dim V
- Wiberg linear program is denser

So, successive linear programming iterations faster for > 20 rows in *U*

Outline

Wiberg L_1 matrix factorization (Eriksson)

→ General Wiberg minimization (Strelow)

Nested Wiberg minimization (Strelow)

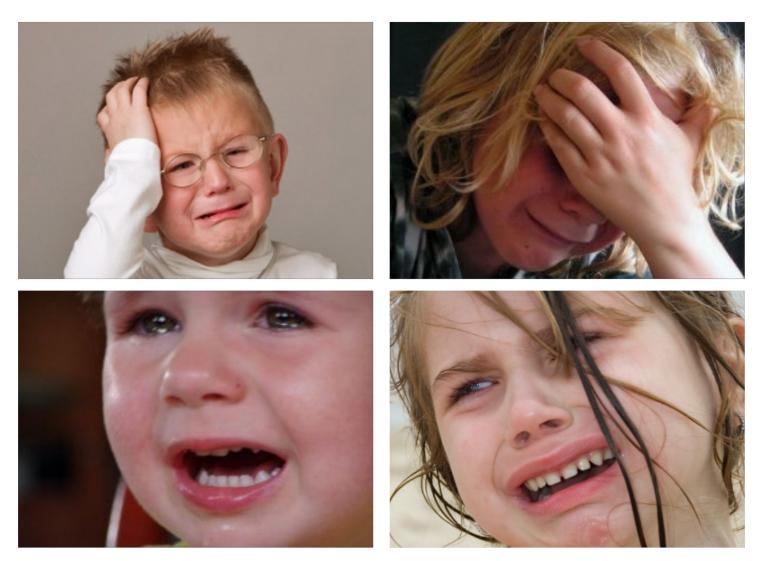
Matrix factorization is linear in both *U* and *V*

Wiberg factorization:

- solves for V in closed form
- but, solves for *U* iteratively

So, we can easily tweak the method to minimize general nonlinear functions of *U*

But, *f* would still have to be linear in *V*.



To handle f nonlinear in both U and V:

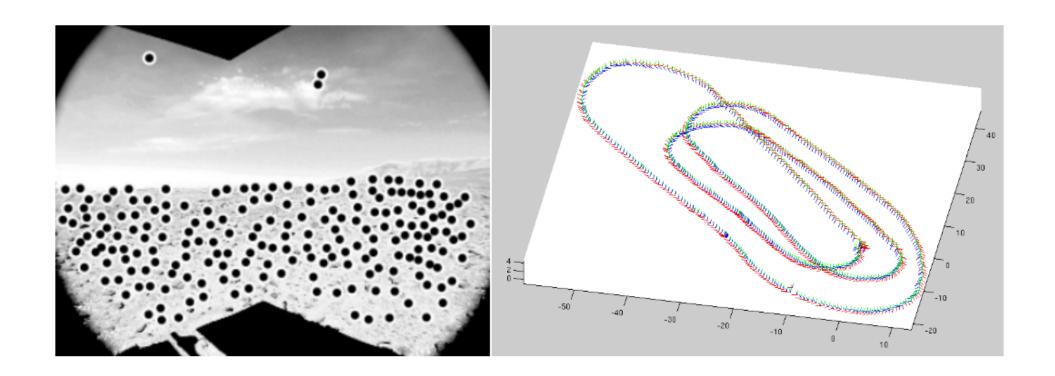
- Find V iteratively
- But then what is *dV/dU*?
 - \circ V is found iteratively, but each step ΔV is found in closed form
 - \circ take $dV/dU = d\Delta V/dU$ for the last ΔV

Like Wiberg matrix factorization, general Wiberg minimization works and can converge quadratically!

Example: Wiberg L_1 bundle adjustment

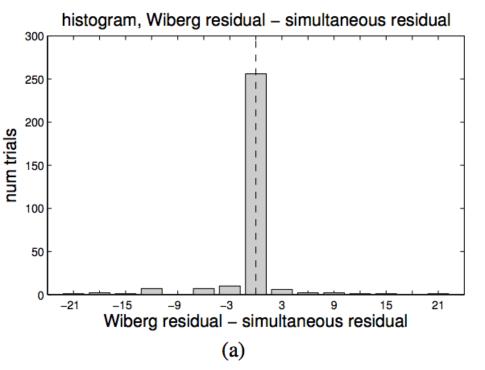
Real example, "rover"

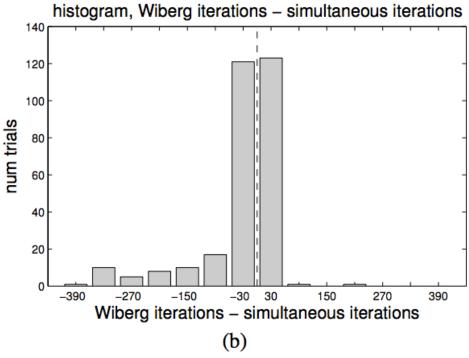
• about 700 images, 10K 3-D points



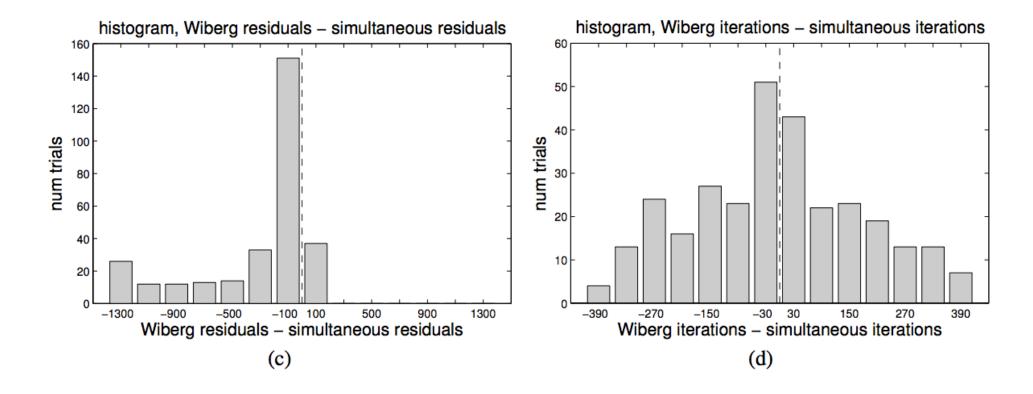
Two bundle adjustment experiments

"Bundle Adjustment 1": low initial residuals





"Bundle adjustment 2": high initial residuals



Speed: simultaneous iterations faster than Wiberg for > 5 images

Outline

Wiberg L_1 matrix factorization (Eriksson)

General Wiberg minimization (Strelow)

→ Nested Wiberg minimization (Strelow)

If we have three unknowns...

$$\min_{U,V,D} f(U, V, D)$$

...can general Wiberg be applied recursively to eliminate two?

$$\min_{U} f(U, V(U), D(V(U)))$$

Yes...nested Wiberg does work and can also converge quadratically!

The derivatives become exponentially more complicated.

Wiberg projective bundle adjustment

- uncalibrated camera
- additional set of unknowns: projective depths

Assignments:

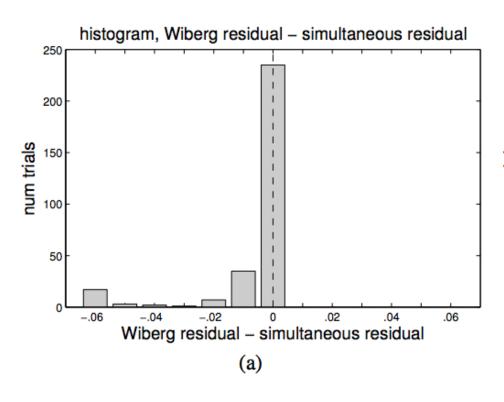
• U: points

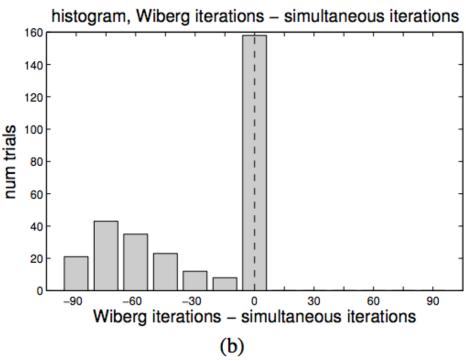
V: cameras

D: projective depths

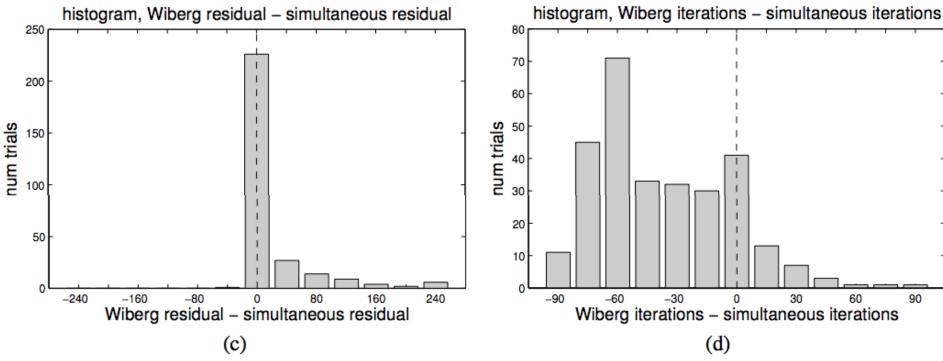
Two projective bundle adjustment experiments

"Projective Bundle Adjustment 1": low initial residuals





"Projective Bundle Adjustment 2": high initial residuals



Speed: Wiberg faster for < 51 points

Work since

Wiberg L_2 and maximum likelihood estimation

- Wiberg L₂ bundle adjustment
- Wiberg L₂ projective bundle adjustment
- Wiberg Poisson matrix factorization

Thanks!

- Emilie Danna
 - linear programming advice → success on real example
- Jay Yagnik, Mei Han, Luca Bertelli, Vivek Kwatra, Rich Gossweiler, Mohamed Eldawy
 - feedback on paper, talk
- Jim Teza, David Wettergreen, Chris Urmson, Mike Wagner
 - o captured rover sequence
- anonymous CVPR reviewers
 - $\circ L_1$ versus L_2 bundle adjustment