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Abstract. Wiberg matrix factorization breaks a matrix Y into low-rank
factors U and V by solving for V in closed form given U , linearizing V (U)
about U , and iteratively minimizing ||Y − UV (U)||2 with respect to U
only. This approach factors the matrix while effectively removing V from
the minimization. We generalize the Wiberg approach beyond factoriza-
tion to minimize an arbitrary function that is nonlinear in each of two
sets of variables. In this paper we focus on the case of L2 minimization
and maximum likelihood estimation (MLE), presenting an L2 Wiberg
bundle adjustment algorithm and a Wiberg MLE algorithm for Poisson
matrix factorization. We also show that one Wiberg minimization can be
nested inside another, effectively removing two of three sets of variables
from a minimization. We demonstrate this idea with a nested Wiberg
algorithm for L2 projective bundle adjustment, solving for camera ma-
trices, points, and projective depths.

1 Introduction

Matrix factorization breaks a matrix Y into low-rank factors U and V by mini-
mizing ||Y −UV ||2 with respect to U and V . If Y is complete, the singular value
decomposition factors Y effectively. If Y has missing entries, U and V can be
estimated by minimizing with respect to all of U and V ’s entries simultaneously,
or by repeatedly solving for U holding V fixed, then V holding U fixed.

Wiberg[1] proposed a third approach for Y with missing entries, which ef-
fectively eliminates V from the problem: solve for V given U in closed form,
linearize V (U) about U , and iteratively minimize ||Y − UV (U)||2 with respect
to U only. Okatani and Deguchi[2] and Okatani, Yoshida, and Deguchi[3] showed
that Wiberg’s approach converges better than simultaneous minimization with
Levenberg-Marquardt and other algorithms. More recently, Eriksson and van
den Hengel[4] extended Wiberg’s approach to L1 matrix factorization. They
showed that their L1-Wiberg factorization converged better than the previous
state-of-the-art for L1, alternating convex programming.

In this paper we generalize the Wiberg approach beyond factorization to
minimize an arbitrary nonlinear function of two sets of variables, f(U, V ). Our
general Wiberg minimization can be used for L1 minimization, L2 minimization,
or maximum likelihood estimation (MLE), and Table 1 shows general Wiberg’s
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linear in U or V

minimize L2 minimize L1 MLE

simultaneous Gauss-Newton successive LP Newton-Raphson

alternating alternating LS alternating LP EM

Wiberg Wiberg 1976 Eriksson 2010 ? general Wiberg

nonlinear in both U and V

minimize L2 minimize L1 MLE

simultaneous Gauss-Newton successive LP Newton-Raphson

alternating alt. Gauss-Newton alt. succ. LP EM

Wiberg ? general Wiberg general Wiberg ? general Wiberg

Table 1. Optimization problems in two sets of variables U , V and possible approaches
for solving them. Our general Wiberg method greatly extends the applicability of the
Wiberg approach, as shown by the red boxes. This paper describes general Wiberg for
L2 minimization and maximum likelihood estimation (“?” in the table), while a recent
companion paper[5] describes general Wiberg for L1 minimization.

place in the space of optimization problems. In this paper we focus on L2 mini-
mization and maximum likelihood estimation, demonstrating these with an L2-
Wiberg bundle adjustment algorithm and Wiberg maximum likelihood estima-
tion for Poisson matrix factorization, respectively.

Our general Wiberg minimization works by solving for V iteratively rather
than in closed form. Since it is found iteratively, V can itself be split into two sets
of variables found using Wiberg minimization. This results in a nested Wiberg
minimization that can effectively minimize with respect to three sets of variables.
We demonstrate this idea with an L2-Wiberg algorithm for projective (uncali-
brated) bundle adjustment, solving for camera matrices, points, and projective
depths.

Our main contributions are general and nested Wiberg L2 minimization;
general and nested L2-Wiberg algorithms for bundle adjustment and projective
bundle adjustment, respectively; Wiberg maximum likelihood estimation; and a
Wiberg maximum likelihood algorithm for Poisson matrix factorization.

A companion paper[5] describes how L1 general and nested Wiberg are de-
rived from Eriksson and van den Hengel’s L1-Wiberg matrix factorization[4]. In
contrast, this paper derives and explores the more practical L2 and maximum
likelihood Wiberg algorithms.

2 Related Work

Wiberg[1] presented an L2 factorization algorithm for matrices with missing
data, which solved for one set of variables V in terms of the other U , linearized
V about U , and then minimized with respect to U only. Okatani and Deguchi[2]
and Okatani, Yoshida, and Deguchi[3] showed that Wiberg factorization con-
verged better than minimizing with respect to U and V simultaneously with
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Levenberg-Marquardt, and argued that Wiberg’s method had been neglected by
the computer vision community.

Recently, Eriksson and van den Hengel[4] extended this approach to L1 ma-
trix factorization using linear programming. Their method outperformed Ke
and Kanade’s alternating convex programming algorithms[6], establishing a new
state-of-the-art for L1 factorization. Eriksson and van den Hengel did not com-
pare their method against a simultaneous minimization method, but in our own
experiments Eriksson and van den Hengel’s method performed better than mini-
mizing with respect to all of the unknowns simultaneously using successive linear
programming. In a recent companion paper[5], we extended Eriksson and van
den Hengel’s L1-Wiberg factorization to minimize general nonlinear functions
of two sets of variables, analogous to the L2 and maximum likelihood general
Wiberg we present here.

Wiberg’s method was an application of Ruhe and Wedin’s[7] more general
work on separable nonlinear minimization that solved for a V in terms of U and
then minimized with respect to U only. Ruhe and Wedin recognized that this
approach would be advantageous when V breaks down into small independent
problems given U , which happens in all the problems in this paper. But, their
analysis and experiments focused on least squares objectives linear in V . In even
earlier work, Richards[8] described a separable method for maximum likelihood
estimation, but similarly demonstrated it only on a least squares problem linear
in V . In contrast, we consider more general functions that can be nonlinear in
both U and V .

The Wiberg approach contrasts with alternating least squares and similar
methods, which alternate between solving for one set of unknowns while holding
the other fixed. Alternating methods sometimes converge well, but they can also
converge very slowly[2] or fail to converge “catastrophically”[9]. For this reason,
we’ve bypassed alternating methods as baseline algorithms, instead choosing
minimization with respect to all of the unknowns simultaneously.

3 General Wiberg Minimization: L2

In this section we briefly review Wiberg matrix factorization and then generalize
Wiberg factorization to minimize arbitrary nonlinear functions of two sets of
variables. We call the resulting algorithm general Wiberg minimization. As an
example of this idea, we implement bundle adjustment as a general Wiberg
minimization.

Our algorithms use matrix calculus, which Fackler[10] summarizes well. But,
most derivatives that we’ll encounter – derivatives of a matrix or derivatives
with respect to a matrix – can be handled by flattening the matrix by column
and then using the normal rules for vector calculus.

3.1 Wiberg Matrix Factorization

Matrix factorization breaks a matrix Y into low-rank factors U and V by mini-
mizing ||Y −UV ||2 with respect to U and V . The Wiberg approach to factoriza-
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tion effectively eliminates V from the problem, by solving for V given U in closed
form, linearizing V (U) about U , and iteratively minimizing ||Y −UV (U)||2 with
respect to U only. In this section we briefly present each of these steps; see [2]
and [3] for a more detailed discussion.

We’ve simplified the description slightly by assuming that Y is full. Chang-
ing the derivation to explicitly handle Y with missing entries introduces some
non-essential notation, but is straightforward and in our bundle adjustment ex-
periments below we include problems with missing observations.

Solve for V given U. Given an estimate of U , estimate each column vj of
V independently using the normal equations Avj = b, where A = UTU and
b = UTyi.

Linearize V(U) with respect to U . Then,

dvj
dA

= −vTj ⊗A−1 (1)

dvj
db

= A−1 (2)

where ⊗ is the Kronecker product. Since each element of A is the dot product
of a column of U and a row of U , and b is the dot product of a column of U and
yi, the derivatives dA/dU and db/dU are straightforward. Then,

dvj
dU

=
dvj
dA

dA

dU
+
dvj
db

db

dU
(3)

Minimize with respect to U only. Given estimates U and vj , our approxima-
tion or prediction pi,j of Yi,j is uivj , where ui is row i of U . Then,

dpi,j
dU

=
∂pi,j
∂U

+
∂pi,j
∂vj

dvj
dU

(4)

where
∂pi,j
∂ui

= vTj
∂pi,j
∂vj

= ui (5)

and the partial derivatives ∂pi,j with respect to the other components of U are
zero.

Together, the errors Yi,j − pi,j and the first derivatives (4) are used to con-
struct the gradient and approximate Hessian for Levenberg-Marquardt, estimat-
ing U only. Press et al.[11] give a good overview of Levenberg-Marquardt.

3.2 General Wiberg Minimization

Wiberg factorization solves for V using the normal equations but solves for U
using Levenberg-Marquardt. So, adapting the algorithm to minimize a nonlinear
function of U is straightforward – possibly just by changing a few lines of code
– as long as the function is linear in V . But many functions are nonlinear in two
sets of variables. In bundle adjustment, for instance, the objective function is
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a sum of reprojection errors, which are nonlinear in both the three-dimensional
point positions and the six-degree-of-freedom camera positions.

To handle objectives like these, we use Levenberg-Marquardt for V as well
as U . With this approach, we have an outer loop that minimizes with respect
to U , and within each U iteration, we have an inner loop that minimizes with
respect to V . This method is best suited for problems like bundle adjustment
(and factorization) where given U , V breaks down into independent subproblems
vc. In this case the time for iteratively solving for the vc is small because each
vc is much smaller than U .

But in the Wiberg approach, the vc’s vary implicitly with U via dvc/dU .
How do we find dvc/dU if we found vc iteratively? In short, each Levenberg-
Marquardt step is found in closed form, and the derivative of vc is the derivative
of the final Levenberg-Marquardt step δvc:

dvc
dU

=
dδvc
dU

(6)

=
dδvc

dHessian

dHessian

dU
(7)

+
dδvc

dgradient

dgradient

dU
(8)

The derivatives of δvc with respect to the Hessian and gradient are found simi-
larly to the derivative of vj with respect to A and b in Wiberg factorization. The
Hessian and gradient each include derivatives of the predictions with respect to
vc as factors, so the derivatives of the Hessian and gradient with respect to U
include second derivatives with respect to vc and U as factors.

Once we have the vc’s and dvc/dU ’s, the derivatives of the predictions with
respect to U are found similarly to (4):

dpi
dU

=
∂pi
∂U

+
∂pi
∂V

dV

dU
(9)

We can then minimize with respect to U by using this derivative in the Levenberg-
Marquardt minimization for U , just as we did in the Wiberg factorization, using
(9) to construct the Hessian and gradient.

3.3 Bundle Adjustment

Bundle adjustment is the go-to algorithm for structure-from-motion. Given two-
dimensional observations xi,j of three-dimensional points in an image collection,
bundle adjustment estimates the three-dimensional position of the each point
Xj and the six-degree-of-freedom position (rotation ρi and translation ti) of the
camera for each image, by minimizing:∑

i,j

(xi,j − π(R(ρi)Xj + ti))
2 (10)

where π is the perspective projection and R(ρi) is the rotation matrix for Euler
angles ρi. In Section 6.1 below, we’ll investigate minimizing (10) with general
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Wiberg, with the camera variables in the outer loop and the point variables in
the inner loop.

Normally (10) is minimized with Levenberg-Marquardt. Each iteration of
Levenberg-Marquardt solves for a step [δC ; δS ] in the camera components C and
structure (point) components S:[

HCC HCS

HSC HSS

] [
δC
δS

]
= −

[
gC
gS

]
(11)

One way to solve (11) is to first solve a reduced camera system[12] for δC :

HCCδC = −gCC (12)

HCC = HCC −HCSH
−1
SSHSC (13)

gCC = gC −HCSH
−1
SSgS (14)

and then find δS by back-substitution. This produces the same step as solving
(11) directly.

General Wiberg and the reduced camera system both remove the points from
the problem, and the sparse structures of the general Wiberg and reduced camera
system Hessians are the same. Further, the actual values in the two systems are
close if the errors in the observations and estimates are small. But in general,
the two systems differ. The algorithms also differ in that given the most recent
camera variable estimates, Wiberg finds optimal point estimates using the inner
iteration rather than accepting the δS from back-substitution.

In contrast, Okatani et al.[3] noted that for the specific problem of matrix fac-
torization, applying the reduced camera system idea produces the same system
and step for U as Wiberg. So, Wiberg’s advantage over Levenberg-Marquardt
for matrix factorization appears to be Wiberg’s optimal resolve for V given the
new U on each iteration.

4 General Wiberg Minimization: Maximum Likelihood
Estimation

The general Wiberg minimization in Section 3.2 minimizes least squares error,
using Levenberg-Marquardt in both the inner and outer iteration. A common,
more general problem is minimizing a negative log likelihood (NLL) for maxi-
mum likelihood estimation (MLE). In this section, we present a general Wiberg
algorithm for minimizing negative log likelihoods. This MLE algorithm is similar
to the least squares algorithm, but replaces Levenberg-Marquardt with Newton-
Raphson and requires d2V/dU2, which does not appear in the previous algo-
rithms.

Wiberg MLE has the same overall structure as least squares general Wiberg
– an inner iteration solves for V while an outer iteration solves for U . Each of
these iterations repeatedly solves a linear system Hδ = −g for a step δ in the
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estimate, where g and H are the first and second derivatives of the error (for
least squares) or NLL (for MLE).

Levenberg-Marquardt is specific to least squares and approximates the sec-
ond derivative matrix H as the product of two first derivatives[11]. In contrast,
Newton-Raphson requires full second derivatives. The second derivative of NLL
with respect to V for the inner iteration is straightforward, while the second
derivative with respect to U is challenging. The first derivative with respect to
U is similar in form to the first derivative of the predictions in our least squares
problems (4), (9):

dNLL

dU
=
∂NLL

∂U
+
∂NLL

∂V

dV

dU
(15)

Taking the derivative of (15) with respect to U again gives us the second deriva-
tive:

d2NLL

dU2
=
d(∂NLL/∂U)

dU
+
d(∂NLL/∂V ∗ dV/dU)

dU
(16)

Evaluating (16) introduces d2V/dU2, which is not present in Wiberg matrix
factorization or general Wiberg least squares.

To find dV/dU and d2V/dU2, we’ll take the derivatives of V to be the deriva-
tives of the final Newton-Raphson step for V , just as we did in the least squares
algorithm. Here, the step is given by HV δV = −gV , where HV is the full second
derivative matrix of NLL with respect to V , and gV is the first derivative with
respect to V . Then, dV/dHV and dV/dgV are similar to (1) and (2), respectively:

dV

dHV
= −V T ⊗H−1

V (17)

dV

dgV
= H−1

V (18)

Working from these, we can then find dV/dU and d2V/dU2 by considering Hv

and gv as functions of U .

4.1 Poisson Matrix Factorization

Often we want to factor a Poisson-distributed matrix A into low-rank, nonnega-
tive factors U , V [13]. If we enforce nonnegativity (or strictly speaking, positivity)
by optimizing with respect to the elementwise logarithms log(U) and log(V ),
then maximum likelihood estimates can be found by minimizing the negative
log likelihood:

NLL =

m∑
i=1

n∑
j=1

(xij − aij log xij) (19)

where X = exp(log(U)) exp(log(V )) and log() and exp() are elementwise. (19)
can be minimized with the general Wiberg MLE approach in this section, and in
Section 6.3 below, we’ll compare Wiberg and Newton-Raphson for this problem.
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5 L2 Nested Wiberg Minimization

Our general Wiberg minimization in Section 3.2 works by solving for V itera-
tively rather than in closed form. Since it is found iteratively, V can itself be
split into two sets of variables found using the Wiberg approach. This results
in a nested Wiberg minimization that can effectively minimize with respect to
three sets of variables. In this section, we demonstrate this idea on projective
structure-from-motion, where the three sets of unknowns are camera matrices,
three-dimensional point positions, and projective depths.

So suppose we have three sets of variables U , V , and D; that given U and V
we minimize with respect to D in closed form; that given U we minimize with
respect to V and D in an inner iteration; and that we minimize with respect to
U in an outer iteration. Then to minimize with respect to U using Levenberg-
Marquardt, we’ll need the total derivative of our predictions p with respect to
U :

dp

dU
=

∂p

∂U
+

(
∂p

∂V
+
∂p

∂D

dD

dV

)
dV

dU
+
∂p

∂D

dD

dU
(20)

Equation (9) is a total derivative of p with respect to U , with V a function of U .
Equation (20) generalizes this to the total derivative of p with respect to U , with
V a function of U and D a function of both U and V . The factor in parentheses
is the total derivative of p with respect to V , with D a function of V , and reflects
the nesting.

Deriving (20) requires us to expand a complex tree of derivatives. Because
of limited space, we can’t completely explore that tree here. But to suggest the
full procedure, we summarize one path from the root of this tree as follows:

1. (20) includes the factor dV/dU .
2. dV/dU is similar to equation (6-8), and includes d(dp(vc)/dvc)/dU .
3. dp(vc)/dvc is a total derivative and includes the factor dD/dvc .
4. D and the derivatives of D with respect to the system that produces it are

found in closed form.
5. That coefficient matrix and right-hand side of the system for D are functions

of vc, so we can use the chain rule to get the derivative of D with respect to
vc.

The derivatives at the other leaves are found similarly and combined using the
rules for derivatives of matrix expressions[10].

5.1 Projective Bundle Adjustment

The bundle adjustment in Section 3.3 can be used when the camera calibration
(e.g., focal length) is known. In contrast, projective bundle adjustment recovers
structure and motion from uncalibrated image sequences. A projective recon-
struction includes 3 × 4 camera projection matrices Ci and 4-dimensional pro-
jective points Xj that are consistent with the image observations and are known
up to a common 4×4 transformation. This transformation can be identified, and
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the projective reconstruction upgraded to a metric reconstruction, given some
knowledge of the scene geometry or camera intrinsics.

Our objective is: ∑
i,j

||[ui,j vi,j 1]T − di,jCiXj ||1 (21)

where (ui,j , vi,j) and di,j are the two-dimensional image location and inverse pro-
jective depth of point j in image i. We can minimize (21) with respect to Ci, Xj ,
and di,j , using either nested Wiberg minimization or simultaneous minimization.

We present results for both Wiberg and simultaneous minimization in Section
6.2 below. For Wiberg, we’ve chosen to find each inverse depth independently
given point and projection matrix estimates, in closed form; to find each projec-
tion matrix given point estimates using an inner Wiberg minimization, letting
the inverse depths vary implicitly; and to solve for the points in an outer Wiberg
minimization, letting the projection matrices and inverse depths vary implicitly.

Given point and projection matrix estimates, it’s also possible to “read
off”[14] the projective depths as the last element of CX rather than estimat-
ing them. This results in the projective bundle adjustment algorithm given by
Hartley and Zisserman[15]. Here, we explicitly estimate the inverse depths as an
example of a nested Wiberg minimization. The objective using this approach
is similar to that in factorization methods for projective structure-from-motion,
which do require that the depths be explicitly estimated. Oliensis and Hartley[16]
also perform an L2 projective bundle adjustment by minimizing with respect to
the projection matrices, points, and depths.

6 Results

6.1 Bundle Adjustment

In this section we compare bundle adjustment using Wiberg and Levenberg-
Marquardt with synthetic experiments, and recover structure and motion from
a real image sequence using the Wiberg algorithm.

We conducted two sets of synthetic experiments. In the first, Bundle Ad-
justment 1, we used points uniformly distributed on a sphere of radius 10, and
cameras moving in a ring of radius 20 around the sphere’s center, looking inward.
We varied the number of images (2, 3, 5, 7, 11, 18), the number of points (10, 23,
54, 128, 300), and the error in the initial estimates of the camera rotation Eu-
ler angles, camera translation, and three-dimensional point positions. We drew
the errors in the initial estimates from [−ε, ε], for 10 ε’s varying exponentially
between 10−3 and 101. The larger ε’s near 101 are larger than we would expect
from a reasonable initial estimate, e.g., from a structure-from-motion extended
Kalman filter[17]. In each trial, we ran both Wiberg and Levenberg-Marquardt
for 50 iterations, using the same noisy initial estimates for both methods. In
this experiment, Wiberg and Levenberg-Marquardt both converge to the correct
estimate in a few iterations in every trial.
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However, Wiberg and Levenberg-Marquardt begin to differ in two more ex-
treme versions instances of this problem. First, for ε > 1, Wiberg’s inner point
solves produce some points at “infinity,” preventing convergence. In contrast,
Levenberg-Marquardt converges reliably up to about ε = 10, because the single
damping factor in joint step for the cameras and points prevents the point esti-
mates from going wild. Second, if we require a very strict residual threshold for
convergence, we find that Wiberg sometimes converges in many fewer iterations
than Levenberg-Marquardt. Of the 300 trials, both methods converged to this
strict threshold in 166 trials; Levenberg-Marquardt converged to the threshold
faster than Wiberg in one trial; and Wiberg converged to the threshold faster
than Levenberg-Marquardt in 149 trials. Often Wiberg finished in many fewer
iterations, as shown in Figure 1.

In the second suite of synthetic experiments, Bundle Adjustment 2, we inves-
tigated the effects of occlusion by varying the percentage of visible projections.
We generated a realistic occlusion pattern by having a camera with a finite field
of view flying over a terrain-like set of points. We again ran 300 trials, using
20 images in each; varying the number of points (100, 131, 173, 227, 300); the
fraction of visible projections (.5, .75, 1.0); and the random errors in the initial
estimates. For the random errors, we used the same distribution of ε’s as in
Bundle Adjustment 1 above.

The results are similar to Bundle Adjustment 1. Both methods converge in
each trial in a few iterations. For a version of the experiment with larger errors
in the initial estimates, Levenberg-Marquardt converges for slightly higher ini-
tial errors than Wiberg. For the most interesting case of 0.5 visible projections,
Wiberg converged for errors up to ε = 1.94, whereas Levenberg-Marquardt typ-
ically converged for errors up to ε = 5.15. For a version of the experiment with
a very strict convergence threshold, Wiberg converges faster. Again for 0.5 vis-
ible projections, both methods converged to the strict threshold in 201 cases;
Levenberg-Marquardt converged faster in one case; Wiberg converged faster in
200 cases. The difference in the number of iterations is again shown in Figure 1.

Figure 2 shows an example image from a real sequence, “perspective rover,”
with tracked points shown as black dots. The camera looks out from the back of
a rover while the rover executes three large loops. The sequence includes about
700 images and about 10,000 three-dimensional points.

The Wiberg bundle adjustment algorithm correctly recovers the structure
and motion, and the estimated motion is shown in Figure 2. The result is locally
correct and consistent with the global motion estimates from GPS and odometry.
We picked this example because it cannot be solved using factorization and affine
structure-from-motion – perspective effects are extremely strong because of the
large difference in distance to the near and far points.

6.2 Projective Bundle Adjustment

We conducted two experiments comparing the nested Wiberg algorithm for pro-
jective bundle adjustment in Section 5.1 with minimizing with respect to all of
the unknowns simultaneously with Levenberg-Marquardt. The first, Projective
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Fig. 1. Histograms of the differences in the number of iterations required for con-
vergence to a strict residual threshold, Wiberg - Levenberg-Marquardt, for bundle
adjustment. The left plot shows the differences for Bundle Adjustment 1 (points on a
sphere) and the right plot shows the differences Bundle Adjustment 2 (occlusion) with
fraction of data visible = 0.5 in on the right. For this strict threshold, Wiberg often
convergences in many fewer iterations than Levenberg-Marquardt.

Bundle Adjustment 1, uses 300 trials with the same points and camera posi-
tions as Bundle Adjustment 1 above. We drew the errors in the initial point and
camera estimates from [−ε, ε], for 10 ε’s varying exponentially between 10−2 and
101. Our initial estimates for the inverse projective depths was 1.0, which is the
estimate normally used by projective factorization algorithms. Both methods
converged for all values of ε except ε = 10, where Wiberg failed for four trials
and Levenberg-Marquardt failed for one trial.

The second experiment, Projective Bundle Adjustment 2, is identical to Pro-
jective Bundle Adjustment 1 except that the camera ring radius is shorted to
10.1 – just 0.1 units from the point sphere. In this case, the default estimate of
1.0 for the inverse depths is poor, and Levenberg-Marquardt often fails for all ε.
In contrast, Wiberg doesn’t begin to fail until ε = 2.15. The Wiberg approach -
finding optimal inverse depths and camera positions given the point estimates,
and allowing them to vary implicitly with the point estimates - is more robust
than finding a joint step for the inverse depths, cameras, and points.

6.3 Poisson Matrix Factorization

We compared the Wiberg Poisson matrix factorization algorithm with damped
Newton-Raphson. We performed 100 trials of factoring a 25 × 25 matrix into
rank 3 matrices. Our ground truth factors had random elements in the range
[0, 1], and the noise in our initial estimates varied across the 100 trials, varying
exponentially between 10−2 and 101. Wiberg started to fail occasionally at ε =
0.081 and routinely at ε = 3.05, which are extremely large initial errors relative
to the actual range of [0, 1]. However, in the cases where Wiberg does converge,
it converges to zero. In contrast, Newton-Raphson fails more gracefully, but
produced smallish residuals for all ε’s rather than converging to zero.
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Fig. 2. Wiberg bundle adjustment reconstructs the correct structure and motion from
the “rover” sequence, which includes about 700 images and 10,000 points. Left: an
example image from the sequence, with tracked points shown as black dots. Right: an
oblique view of the recovered camera positions at the time of each image.

7 Conclusion

We’ve introduced general and nested Wiberg minimization, which extend Wiberg’s
approach to matrix factorization to general functions that are nonlinear in two or
three sets of variables. More specifically, in this paper we’ve explored Wiberg al-
gorithms for L2 minimization and maximum likelihood estimation, and presented
Wiberg algorithms for L2 bundle adjustment, L2 projective bundle adjustment,
and maximum likelihood Poisson matrix factorization.

A separate paper describes L1 general Wiberg, which is robust to outliers in
the observations. However, L1 Wiberg solves a linear program to find each step
while L2 Wiberg solves a simple linear system, so L2 is much faster. Minimizing
the Huber norm, which is continuous but approximates the L1 norm, might pro-
duce L1’s robustness to outliers and L2’s speed. So, our next task is to determine
whether the Huber norm can be minimized using our Wiberg approach.
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