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Abstract

Cameras and inertial sensors are good candidates to be
deployed together for autonomous vehicle motion estima-
tion, since each can be used to resolve the ambiguities in the
estimated motion that results from using the other modal-
ity alone. We present an algorithm that computes optimal
vehicle motion estimates by considering all of the measure-
ments from a camera, rate gyro, and accelerometer simul-
taneously. Such optimal estimates are useful in their own
right, and as a gold standard for the comparison of online
algorithms.

By comparing the motions estimated using visual and in-
ertial measurements, visual measurements only, and iner-
tial measurements only against ground truth, we show that
using image and inertial data together can produce highly
accurate estimates even when the results produced by each
modality alone are very poor. Our test datasets include both
conventional and omnidirectional image sequences, and an
image sequence with a high percentage of missing data.

1. Introduction

Cameras and inertial sensors are each good candidates
for autonomous vehicle navigation because they do not
project any detectable energy into the environment, esti-
mate six degree of freedom motion, are not subject to out-
ages or jamming, and are not limited in range. In addition,
cameras and inertial sensors are good candidates to be de-
ployed together, since in addition to the obvious advantage
of redundant measurements, each can be used to resolve the
ambiguities in the estimated motion that results from using
the other modality alone. For instance, the image measure-
ments can counteract the error that accumulates when in-
tegrating inertial readings, and can be used to distinguish
between the effects of gravity and vehicle acceleration in
accelerometer readings. Conversely, inertial data can re-
solve the ambiguities in motion estimated by a camera that
sees a degenerate scene, such as one containing too few fea-

tures, features infinitely far away, or features in an acciden-
tal geometric configuration; to remove the discontinuities
in estimated motion that can result from features entering
or leaving the camera’s field of view; and to make motion
estimation more robust to mistracked image features.

Of course, estimating motion using each modality sepa-
rately and combining the individual estimates, e.g., by aver-
aging them, may simply combine two qualitatively incorrect
estimates to produce a third incorrect estimate. In this pa-
per, we present an algorithm that instead considers all of the
measurements from images, a rate gyro, and an accelerome-
ter simultaneously to produce an optimal estimate of the ve-
hicle motion and motion error covariances. In many appli-
cations, this optimal estimate is of interest in its own right.
In others, the optimal estimate is important in understand-
ing the best quality we can expect given a particular sensor
configuration, vehicle motion, environment, and set of ob-
servations, and the inherent sensitivity of the estimate with
respect to random observation errors. In particular, optimal
estimates are useful as a gold standard for the comparison of
online algorithms which, given sufficient computing power,
produce real-time but suboptimal estimates of the vehicle’s
motion.

By comparing the motions estimated using visual and
inertial measurements, visual measurements only, and iner-
tial measurements only against ground truth, we show that
using image and inertial data together can produce highly
accurate estimates even when the results produced by each
modality alone are very poor. Our test datasets include both
conventional and omnidirectional image sequences, and an
image sequence with a high percentage of missing data, i.e.,
where each point is visible in only a small fraction of the
images.

2. Related work

Most of the existing algorithms for motion estimation
using both visual and inertial data are online rather than
optimal methods. Huster and Rock[4] describe an online
method for estimating the motion of an autonomous under-



water vehicle relative to a single point. Similarly, Kaminer,
et al.[7] describe an online method for estimating the posi-
tion of an aircraft relative to a distant aircraft carrier, which
is treated as a point. Qian,et al.[12] describe a more general
method for simultaneously estimating the motion of a cam-
era and the sparse structure of the environment in which the
camera moves. In addition to the basic difference between
optimal and online methods, each of these methods differs
from ours in that they implicitly assume that the points are
visible throughout the entire sequence.

Deans and Hebert[3] consider online, batch, and online-
batch hybrid methods for bearings only simultaneous local-
ization and mapping (SLAM). In this work, the planar mo-
tion of a vehicle and the location of landmarks observed
by the vehicle’s omnidirectional camera are simultaneously
estimated from the landmarks’ vehicle coordinate system
bearings and the vehicle’s odometry. This method is based
on the variable state dimension filter[10], which naturally
handles cases where points are not visible in every image,
but the incorporation of vehicle motion models into this
framework is problematic.

Dean and Hebert’s batch method provides optimal esti-
mates of the vehicle’s motion, and is closely related to the
optimal method we describe. However, estimating six de-
gree of freedom motion from image measurements and in-
ertial sensors introduces some difficulties that do not arise
in estimating planar motion from bearings and odometry. In
particular, using image measurements for six degree of free-
dom motion requires careful modeling and calibration of
the camera, especially in the omnidirectional case, whereas
camera modeling and calibration are not required if only
bearing will be taken from the images. In addition, the
use of accelerometer observations for six degree of free-
dom motion requires estimation of the vehicle’s velocity
and orientation relative to gravity, which odometry does not
require.

A second batch method is described by Jung and
Taylor[6]. This method applies shape-from-motion to a set
of widely spaced keyframes from the image sequence, then
interpolates the keyframe positions by a spline that best
matches the inertial observations. The resulting algorithm
provides a continuous estimate of the sensor motion, and
only requires that feature correspondences be established
between the keyframes, rather than between every image
in the sequence. However, this algorithm is not optimal in
the same sense as ours, since the image and inertial mea-
surements are not used simultaneously. In particular, the
interpolation phase will propagate rather than fix errors in
the motion estimated in the shape-from-motion phase.

3. Method

Our method is a batch algorithm that uses all of the
observations from an image sequence, rate gyro, and ac-

celerometer to produce an optimal estimate of the sensor
motion and the motion error covariances. More specifically,
this algorithm uses Levenberg-Marquardt to minimize a to-
tal error with respect to the sensor rotation, linear transla-
tion, and linear velocity at the time of each image, with
respect to the world coordinate system gravity vector, and
with respect to the three-dimensional world coordinate sys-
tem positions of the tracked points. We assume that sparse
point feature correspondences are provided.

Here, we describe our error function, and refer the reader
to [11] for a discussion of Levenberg-Marquardt, which is
widely used.

3.1 Error function

The overall error function is:

Ecombined = Evisual + Einertial (1)

The visual error term is:

Evisual =
∑
i,j

D(π(Cρi,ti
(Xj)), xij) (2)

Evisual specifies an image reprojection error given the six
degree of freedom camera positions and three-dimensional
point positions. In this error, the sum is overi andj, such
that pointj was observed in imagei. xij is the observed
projection of pointj in imagei. ρi andti are the camera-
to-world rotation Euler angles and camera-to-world transla-
tion, respectively, at the time of imagei, andCρi,ti

is the
world-to-camera transformation specified byρi andti. Xj

is the world coordinate system location of pointj, so that
Cρi,ti

(Xj) is location of pointj in camera coordinate sys-
tem i. π gives the image projection of a three-dimensional
point specified in the camera coordinate system. In our cur-
rent implementation,π may be either a conventional (i.e.,
perspective or orthographic) or an omnidirectional projec-
tion.

All of the individual distance functionsD are Maha-
lanobis distances. The covariances can be isotropic, or di-
rectional covariances found from the image texture[8][2].

The inertial error term is:

Einertial =
f−1∑
i=1

D (ρi, Iρ(τi−1, τi, ρi−1))

+
f−1∑
i=1

D (vi, Iv(τi−1, τi, ρi−1, vi−1, g))

+
f−1∑
i=1

D (ti, It(τi−1, τi, ρi−1, vi−1, g, ti−1))

(3)



Einertial gives an error between the estimated positions and
velocities and the incremental positions and velocities pre-
dicted by the inertial data. Here,f is the number of im-
ages, andτi is the time imagei was captured.ρi and ti
are the camera rotation and translation at timeτi, just as in
the equation forEvisual above. vi gives the camera’s lin-
ear velocity at timeτi, andg is the world coordinate system
gravity vector.

Iρ, Iv, andIt integrate the inertial observations to pro-
duce estimates ofρi, vi, and ti from initial valuesρi−1,
vi−1, andti−1, respectively. Over an interval[τ, τ ′] where
the camera coordinate system angular velocity is assumed
constant, e.g., between the two inertial readings or between
an inertial reading and an image time,Iρ is defined as fol-
lows:

Iρ(τ, τ ′, ρ) = r(Θ(ρ) ·∆Θ(τ ′ − τ)) (4)

wherer(Θ) gives the Euler angles corresponding to the ro-
tation matrixΘ, Θ(ρ) gives the rotation matrix correspond-
ing to the Euler anglesρ, and∆Θ(∆t) gives an incremental
rotation matrix:

∆Θ(∆t) = exp

∆t

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (5)

and whereω = (ωx, ωy, ωz) is the camera coordinate sys-
tem angular velocity measurement from the rate gyro. Over
an interval[τ, τ ′] when the world coordinate system linear
acceleration is assumed constant,Iv andIt are given by the
familiar equations:

Iv(τ, τ ′, ρ, v, g) = v + a(τ ′ − τ) (6)

and

It(τ, τ ′, ρ, v, g, t) = t + v(τ ′ − τ) +
1
2
a(τ ′ − τ)2 (7)

wherea is the world coordinate system acceleration

a = Θ(ρ) · a′ + g (8)

anda′ is the camera coordinate system apparent accelera-
tion given by the accelerometer.

Because inertial measurements are received at a higher
rate than image measurements, the intervals[τi−1, τi] be-
tween images span several inertial readings. To integrate
the rotation, velocity, and translation over these larger in-
tervals,Iρ, Iv, andIt divide [τi−1, τi] into the subintervals
demarcated by the inertial measurement times and sequen-
tially apply (4), (6), and (7) over each subinterval.

As with the distances inEvisual, all of the distancesD in
Einertial are Mahalanobis distances. In the experiments de-
scribed in Section 4, isotropic covariances have been used to
specify the relative importance of the image, gyro, and ac-
celerometer error terms. Specifically, we have used a stan-
dard deviation of 2.0 pixels,10−4 radians,10−3 m/s, and

10−3 m for the image, rotation, velocity, and translation er-
ror terms.

Two comments aboutEinertial are in order. First, note
thatEinertial does not make any assumptions restricting the
relative timing between image and inertial readings. In par-
ticular, no synchronization between the image and inertial
readings is required, and image and inertial readings can
arrive at different rates, as long as each measurement is ac-
curately timestamped. Second, a possible alternative for-
mulation forEinertial is to use discrete differences to ap-
proximate the first and second derivatives of the estimated
motion, and then require these derivatives to match the in-
ertial measurements. But, this formulation requires that the
durations between image times be small relative to the rate
at which the derivatives change. Our formulation makes no
such assumption, so our error function is suitable for cases
where the duration between images is long.

Levenberg-Marquardt requires an initial estimate of the
parameters. In the experiments described in Section 4, we
have used estimates from an initial implementation of a
visual-inertial online method that we have designed. We
will describe this method in a future paper.

3.2 Visual-only and inertial-only estimates

In Section 4 we compare the estimates produced by our
method to estimates produced using only visual or only in-
ertial measurements. The algorithm used to find the visual-
only estimates minimizesEvisual with respect to the cam-
era rotation and translation at the time of each image, and
with respect to the three-dimensional point locations. This
method is optimal and is essentially the same as bundle
adjustment[14] or nonlinear shape-from-motion[13]. In our
experiments, the initial estimates provided to this visual-
only method are the same as the initial estimates provided
to the visual-with-inertial algorithm, and are close to the
correct solution. This ensures that the differences between
the visual-inertial and visual-only estimates are not due to
differences in the initial estimates.

To estimate motion from inertial measurements only, we
simply integrate the inertial measurements forward from the
first image time to the last image time. As initial conditions
we use the initial position, initial linear velocity, and gravity
vector estimated using our optimal algorithm.

4. Results

4.1 Overview

This section describes the results of running our algo-
rithm on two datasets, one perspective and one omnidirec-
tional, produced by identical motions obtained by mounting
the sensor rig on a preprogrammed robotic arm. For each



dataset, we compare the motions estimated using visual and
inertial measurements, only visual measurements, and only
inertial measurements.

4.2 Configuration

The sensor rig consists of a Sony XC-55 industrial vision
camera, 3 orthogonally mounted CRS04 rate gyros from
Silicon Sensing Systems, and a Crossbow CXL04LP3 3 de-
gree of freedom accelerometer. The gyros and accelerom-
eter measure motions of up to 150 degrees per second and
4 g, respectively. The camera exposure time is set to 1/200
second to reduce motion blur. To take conventional perspec-
tive images, the camera is paired with a 6 mm lens. To take
omnidirectional images, the camera is paired with a 16 mm
lens and a convex mirror.

Images were captured at 30 Hertz on a PC using a con-
ventional frame grabber. To remove the effects of inter-
lacing, only one field was used from each image, produc-
ing 640 × 240 pixel images. Voltages from the gyros
and the accelerometer were simultaneously captured on the
same PC at 200 Hertz with two separate Crossbow CXLDX
analog-to-digital acquisition boards.

The camera intrinsic parameters (e.g., focal length and
radial distortion) were calibrated using the method in [5].
This calibration also accounts for the reduced geometry
of our one-field images. The accelerometer voltage-to-
acceleration calibration was performed using a field cal-
ibration that accounts for non-orthogonality between the
individual x, y, and z accelerometers. The individual
gyro voltage-to-rate calibrations were determined using a
turntable with a known rotational rate. The fixed gyro-
to-camera and accelerometer-to-camera rotations were as-
sumed known from the mechanical specifications of the
mount. For the omnidirectional images, we have assumed
that the mirror is ideally positioned relative to the camera.

4.3 Observations

To perform experiments with known and repeatable mo-
tions, the rig was mounted on a Yaskawa Perfomer-MK3
robotic arm, which has a maximum speed of 3.33 meters
per second and a payload of 2 kilograms. The programmed
motion translates the camerax, y, andz through seven pre-
specified points, for a total distance traveled of about two
meters. Projected onto the (x, y) plane, these points are lo-
cated on a square, and the camera moves on a curved path
between points, producing a clover-like pattern in (x, y).
The camera rotates through an angle of 270 degrees about
the camera’s optical axis during the course of the motion.

Each sequence consists of 152 images, approximately
860 gyro readings, and approximately 860 accelerometer
readings. In the perspective sequence, 23 features were

tracked, but only 5 or 6 appear in any one image. In the om-
nidirectional sequence, the wide field of view enabled track-
ing of 6 points throughout the entire sequence, although
individual points sometimes temporarily left the camera’s
vertical field of view. In both sequences, the points were
tracked using the Lucas-Kanade algorithm[9][1], but be-
cause the sequences contain repetitive texture and large in-
terframe motions, mistracking was common and was cor-
rected manually.

4.4 Estimated motion

As described in Section 3, our method estimates the six
degree of freedom position and linear velocity of the camera
at the time of each image, the world coordinate system loca-
tion of each tracked point, and the world gravity vector. In
this subsection, we’ll give a brief overview of the estimates
resulting from our experiments. For the sake of brevity, we
will concentrate on the estimated (x, y) translation.

Some aspects of the (x, y) components of the estimated
motion are shown graphically in Figures 1 and 2. The (x,
y) translation estimated using both visual and inertial data
is shown as a smooth dash-dotted line in the left hand plot
of Figure 1 for the perspective sequence, and in the right
hand plot for the omnidirectional sequence. In each plot
the seven squares show the known (x, y) positions of the
camera’s ground truth motion. A summary of the error in
these estimates versus ground truth is given in Table 1.

Similarly, the (x, y) translations estimated using visual
measurements only for the perspective and omnidirectional
sequences are shown as the erratic solid lines in the left and
right plots, respectively, of Figure 1. The summary of the
error in these estimates is also given in Table 1. For the
perspective sequence, the poor estimate is due to a combi-
nation of few points visible in each frame, and the planarity
of the points. This leads to a large ambiguity between each
camera position’s rotation and translation, which is resolved
by the rotational rate observations in the visual-with-inertial
estimate. In the omnidirectional sequence, the overall shape
of the visual-only estimate is nearly correct because all of
the points are seen throughout most of the sequence. Some
large scale errors are present due to points temporarily leav-
ing the camera’s vertical field of view, and the small scale
erratic motion in the estimate is due to vibration between
the omnidirectional camera rig’s two components, the cam-
era and mirror.

Each plot in Figure 1 also shows the (x, y) components
of the motion that results from integrating the inertial mea-
surements only, as a diverging dashed line. This divergence
is due to noise in the inertial readings and small errors in
the gravity and initial velocity estimates used to integrate
the data.

The left of Figure 2 shows, for the perspective sequence,
covariance ellipses describing the estimated error covari-
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Figure 1. The estimated ( x, y) camera translations for the perspective sequence (left) and the omnidi-
rectional sequence (right). The visual-only, inertial-only, and visual-with-inertial translation estimates
are shown as the solid, dashed, and dash-dotted lines, respectively. The boxes show the known ( x,
y) ground truth positions.

rotation error (radians) translation error (centimeters)
perspective visual only 0.45 / 0.56 15.1 / 25.1
perspective visual and inertial 0.07 / 0.10 4.3 / 6.3
omni visual only 0.09 / 0.15 8.5 / 12.8
omni visual and inertial 0.09 / 0.11 7.2 / 9.0

Table 1. Errors versus ground truth for the four estimates. Each entry gives the average error before
the slash and the maximum error after the slash.

ances in the (x, y) translations for every fifteenth image of
the sequence. The 1 standard deviation boundary result-
ing from using visual data only are shown as the large dot-
ted ellipses. The solid ellipses show the error boundaries
that result from using both visual and inertial data; in this
case, 5 standard deviation boundaries are used for visibility.
To provide a direct comparison, both the visual-only and
visual-with-inertial parameter covariances are evaluated at
the visual-with-inertial parameter estimate. This solution,
shown as a dash-dotted line, is the same as in Figure 1. The
right of Figure 2 shows the corresponding boundaries for
the omnidirectional sequence; in this case, 5σ boundaries
are shown for both the visual-only and visual-with-inertial
estimates.

5. Conclusions and future work

We have presented an algorithm for finding optimal mo-
tion estimates using both visual and inertial data. Our ex-
perimental results show that this algorithm can eliminate the
ambiguities in motion that result from using either modal-
ity alone, producing highly accurate motion estimates even
when the estimates from either modality alone are very
poor.

As mentioned in Section 3, we are currently developing
an online method for estimating sensor motion from image
and inertial measurements, which uses many of the same
components described in this paper. To improve the ac-
curacy of sensor motion estimation over longer time peri-
ods, we are investigating the incorporation of vehicle mo-
tion models anda priori scene information into both the
optimal and online methods.



−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Expected (x, y) camera translation errors

(meters)

(m
et

er
s)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(x, y) camera translation error covariances

(meters)
(m

et
er

s)

Figure 2. The ( x, y) camera translation error covariances for the perspective sequence (left) and
the omnidirectional sequence (right). The dotted and solid ellipses give the visual-only and visual-
with-inertial error boundaries, respectively. The dash-dotted curve is the visual-with-inertial motion
estimate. For visibility, 5 σ error boundaries are shown for all covariances, except in the perspective
visual-only case, where the 1 σ boundary is shown.
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